







### INSTITUTO DE CIENCIAS DE LA CONSTRUCCIÓN **EDUARDO TORROJA**

Tel.: (34) 91 302 04 40 direccion.ietcc@csic.es

C/ Serrano Galvache n. 4 28033 Madrid (Spanien) Fax: (34) 91 302 07 00 https://dit.ietcc.csic.es

## Europäische **Technische** Bewertung

### ETA 20/0046 vom 17.06.2024

Deutsche Übersetzung von Técnicas Expansivas S. L. Die Originalversion ist in englischer Sprache verfasst

### Allgemeiner Teil

Technische Prüfstelle, die die ETA (Europäische Technische Bewertung) nach Art. 29 der Verordnung (EU) 305/2011 ausstellt:

Instituto de Ciencias de la Construcción Eduardo Torroja (IETcc)

Handelsbezeichnung des **Bauprodukts:** 

Produktfamilie, zu der das Produkt gehört:

Schraubanker THE

Betonschraube in den Größen 6, 8, 10, 12, 14, 16 und 18 zur Verankerung in Beton.

Hersteller:

Index - Técnicas Expansivas S.L.

Segador 13

26006 Logroño (La Rioja) Spanien.

Website: www.indexfix.com

Herstellwerk(e):

Diese Europäische Technische **Bewertung umfasst:** 

Diese Europäische Technische Bewertung wird ausgestellt in Übereinstimmung mit der Verordnung (EU) Nr. 305/2011, auf der Grundlage von:

Diese Fassung ersetzt:

Index-Werk 2

einschließlich Anhänge, wesentlicher Bestandteil dieser Bewertung sind.

DEE Bewertungsdokument 330232-01-0601 "Metall-Dübel zur Verankerung im Beton", Ausg. Dezember 2019

ETA 20/0046, ausgestellt am 16.03.2023

Seite 2 der Europäischen Technischen Bewertung ETA 20/0046 vom 17. Juni 2024 Deutsche Übersetzung von Técnicas Expansivas S. L.

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Art. 3 Abs. 25 der Verordnung (EU) Nr. 305/2011.

#### SPEZIFISCHER TEIL

### 1. Technische Beschreibung des Produkts

Die Betonschraube THE ist ein Dübel aus Kohlenstoffstahl in den Größen 6, 8, 10, 12, 14, 16 und 18. Die Betonschraube TXE ist ein Dübel aus rostfreiem Stahl in den Größen 6, 8, 10 und 12. Der Dübel wird in ein vorgebohrtes, zylindrisches Bohrloch eingeschraubt. Das Spezialgewinde des Dübels schneidet beim Einschrauben ein Innengewinde in den Verankerungsgrund. Die Verankerung erfolgt durch die mechanische Überlagerung zwischen Dübel und Beton.

In Anhang A werden Produkt und Einbauzustand dargestellt.

# 2. Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument (EBD)

Die Leistungen in Abschnitt 3 gelten nur, wenn der Anker entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

Die Bestimmungen dieser europäischen technischen Bewertung beruhen auf einer angenommenen Nutzungsdauer des Einschlagankers von 50 Jahren. Die Angaben über die Nutzungsdauer können nicht als Garantie des Herstellers ausgelegt werden, sondern sind lediglich als Hilfsmittel zur Auswahl der richtigen Produkte im Hinblick auf die erwartete wirtschaftlich angemessene Nutzungsdauer des Bauwerks zu betrachten.

### 3. Merkmale des Produkts und Nachweisverfahren

### 3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

| Wesentliche Merkmale                                                                                 | Eigenschaften             |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------|---------------------------|--|--|--|--|--|--|--|--|
| Charakteristische Tragfähigkeit unter statischen oder Siehe Anhang C4 bis C7 quasi-statischen Lasten |                           |  |  |  |  |  |  |  |  |
| Verschiebungen unter Zug- und Querlast                                                               | Siehe Anhang C8, C9       |  |  |  |  |  |  |  |  |
| Charakteristische Widerstände für die seismische                                                     | Siehe Anhänge C10 bis C12 |  |  |  |  |  |  |  |  |
| Kategorien C1 und C2                                                                                 |                           |  |  |  |  |  |  |  |  |

### 3.2 Brandschutz (BWR 2)

| Wesentliche Merkmale                       | Eigenschaften                  |
|--------------------------------------------|--------------------------------|
| Brandverhalten                             | Die Verankerungen erfüllen die |
| Dianavernalien                             | Anforderungen der Klasse A1    |
| Wesentliche Merkmale unter Brandeinwirkung | Siehe Anhänge C13 bis C24      |

# 4. Aufgrund der rechtlichen Grundlagen angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit des Produkts (AVCP)

Als europäische rechtliche Grundlage für das System zur Bewertung und Überprüfung der Leistungsbeständigkeit (siehe Anhang V der Verordnung (EU) Nr. 305/2011) gilt 96/582/EG.

Folgendes System ist anzuwenden: 1.

## 5. Erforderliche technische Einzelheiten für die Durchführung des Systems AVCP gemäß anwendbarem EBD

Die für die Durchführung des Systems AVCP notwendigen technischen Einzelheiten sind Bestandteil des Prüfplans, der bei dem Institut für Bauwissenschaften Eduardo Torroja hinterlegt ist.

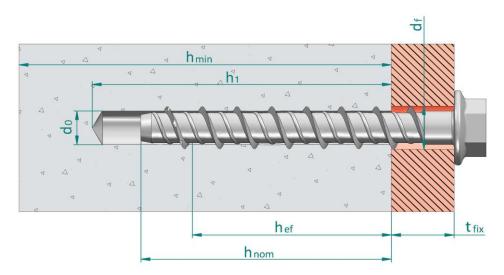


## Instituto de Ciencias de la Construcción Eduardo Torroja CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS



C/ Serrano Galvache n.º 4. 28033 Madrid, Spanien Tel.: (+34) 91 302 04 40 Fax. (+34) 91 302 07 00 https://dit.ietcc.csic.es

Im Namen des Instituts für Bauwissenschaften Eduardo Torroja Madrid, 17. Juni 2024


Leiter(in) des IETcc - CSIC

### <u>Produktausführungen</u>

| Abbildung | Material/Beschichtu<br>ng                                                                   | Kopfausführungen/Größ<br>en                                                                                                                          |
|-----------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |                                                                                             | -E, -K: Sechskant-Flanschkopf.<br>Größen: 6, 8, 10, 12, 14, 16 und<br>18                                                                             |
|           |                                                                                             | -J: Sechskant-Flanschkopf. Tx.<br>Größe: 6                                                                                                           |
|           |                                                                                             | -A: Senkkopf, Tx<br>Größen: 6, 8 10 und 12                                                                                                           |
|           | Kohlenstoffstahl:                                                                           | -N: Sechskantkopf.<br>Größen: 6, 8, 10, 12, 14, 16 und<br>18                                                                                         |
|           | -H: Atlantis -F: Verzinkt -N: Zinklamellen                                                  | -P: Flachkopf. Tx<br>Größen: 6 und 8                                                                                                                 |
|           | <ul><li>-K: Zink-Nickel</li><li>-G: Mechanisch verzinkt</li><li>Rostfreier Stahl:</li></ul> | T: Flachrundkopf. Tx.<br>Größe: 6                                                                                                                    |
|           | -X: A4 rostfreier Stahl                                                                     | -W: Bolzenkopf mit Mutter DIN<br>934 Klasse 6 und<br>Unterlegscheibe DIN 125<br>Größen: 6 M8, 8 M10, 10 M12,<br>12 M14, 14 M16, 16 M18 und 18<br>M20 |
|           |                                                                                             | -S: Bolzenkopf<br>Größen: 6 M8, 8 M10, 10 M12,<br>12 M14, 14 M16, 16 M18 und 18<br>M20                                                               |
|           |                                                                                             | -M: Außengewinde<br>Größe: 6, Außengewinde M8,<br>M10; 8 Außengewinde M10,<br>M12                                                                    |
|           |                                                                                             | -F: Verankerung von Stangen<br>Größe 6: Innengewinde M10;<br>Kombi-Gewinde M8/M10<br>Größe 8: Innengewinde M10;<br>M12                               |

| Betonschraube THE, TXE |              |
|------------------------|--------------|
| Produktbeschreibung    | Anhang<br>A1 |
| Schraubenausführungen  |              |

### **Einbauzustand**



 $d_0$ : Nenn-Bohrungsdurchmesser

d<sub>f</sub>: Durchmesser des Durchgangslochs im Anbauteil

h<sub>ef</sub>: effektive Verankerungstiefe

h<sub>1</sub>: Bohrlochtiefe

 $h_{\text{nom}}$ : Verankerungstiefe im Beton

h<sub>min</sub>: Min. Betondicke t<sub>fix</sub>: Dicke des Anbauteils

Kopfmarkierung: Logo des Unternehmens + Durchmesser x Länge

Die Spitze des Gewindes kann gefärbt sein.

Bei Köpfen, auf denen nicht genügend Platz zur Verfügung steht, kann die Längenmarkierung durch die

folgenden Codes ersetzt werden:

| Buchstabe auf dem Kopf | Länge [mm] |
|------------------------|------------|
| Α                      | 35 ÷ 50    |
| В                      | 51 ÷ 62    |
| С                      | 63 ÷75     |
| D                      | 76 ÷ 88    |
| Е                      | 89 ÷ 101   |
| F                      | 102 ÷ 113  |
| G                      | 114 ÷ 126  |
| Н                      | 127 ÷139   |
| I                      | 140 ÷153   |

**Tabelle A1: Baustoffe** 

| Pos. | Bezeichnung        | Material der Betonschraube THE                                                                                                                                                                                                                                                                   | Material der Betonschraube TXE                                                                       |
|------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| 1    | Verankerungskörper | Kohlenstoffstahl, verzinkt ≥ 5 µm ISO 4042<br>Zn5<br>Kohlenstoffstahl, Zink-Nickel ≥ 8 µm ISO 4042,<br>ZnNi8/An/T2<br>Kohlenstoffstahl, Zinklamellen ≥ 6 µm ISO<br>10683<br>Kohlenstoffstahl, mechanisch verzinkt ≥ 40 µm<br>EN ISO 12683 Zn 40 M(Fe)<br>Kohlenstoffstahl, Atlantis-Beschichtung | Schaft und Kopf: rostfreier<br>Stahl, Klasse A4 ISO 3506-1<br>Spitze: gehärteter<br>Kohlenstoffstahl |

| Betonschraube THE, TXE      |              |
|-----------------------------|--------------|
| Produktbeschreibung         | Anhang<br>A2 |
| Einbauzustand und Baustoffe |              |

### Spezifizierung des Verwendungszwecks

| Größe                                         |          | 6        |          | 3      | 3      |        | 10     |        | 1      | 2        | 1      | 4        | 1        | 6       | 1 | 8       |
|-----------------------------------------------|----------|----------|----------|--------|--------|--------|--------|--------|--------|----------|--------|----------|----------|---------|---|---------|
| $h_{nom}$                                     | 3<br>5   | 4<br>0   | 5<br>5   | 5<br>0 | 6<br>5 | 5<br>5 | 7<br>5 | 8<br>5 | 7<br>5 | 10<br>5  | 7<br>5 | 11<br>5  | 8        | 12<br>0 | 9 | 14<br>0 |
| THE                                           |          |          |          |        |        |        |        |        |        |          |        |          |          |         |   |         |
| statischen oder<br>quasi-statischen<br>Lasten | <b>✓</b> | <b>✓</b> | <b>✓</b> | ✓      | ✓      | ✓      | ✓      | ✓      | ✓      | ✓        | ✓      | <b>✓</b> | <b>✓</b> | ✓       | ✓ | ✓       |
| Seismische<br>Kategorie C1                    |          | ✓        | ✓        | ✓      | ✓      |        |        | ✓      |        | ✓        |        | ✓        |          |         |   | ✓       |
| Seismische<br>Kategorie C2                    |          |          |          | ✓      | ✓      |        |        | ✓      |        | ✓        |        | ✓        |          |         |   | ✓       |
| Feuerbeständigke<br>it bis 120 Minuten        | ✓        | ✓        | ✓        | ✓      | ✓      | ✓      | ✓      | ✓      | ✓      | ✓        | ✓      | ✓        | ✓        | ✓       | ✓ | ✓       |
| TXE                                           | -        | -        | -        | -      | -      | -      | -      | -      | =      | -        | -      |          | -        | -       | - | -       |
| statischen oder<br>quasi-statischen<br>Lasten | <b>✓</b> | <b>✓</b> | <b>✓</b> | ✓      | ✓      | ✓      |        | ✓      | ✓      | <b>✓</b> |        |          |          |         |   |         |
| Seismische<br>Kategorie C1                    |          | ✓        | ✓        | ✓      | ✓      | ✓      |        | ✓      | ✓      | ✓        |        |          |          |         |   |         |
| Seismische<br>Kategorie C2                    |          |          |          |        |        |        |        |        |        |          |        |          |          |         |   |         |
| Feuerbeständigke<br>it bis 120 Minuten        | ✓        | ✓        | ✓        | ✓      | ✓      | ✓      |        | ✓      | ✓      | ✓        |        |          |          |         |   |         |

#### Baustoffe:

- Bewehrter oder unbewehrter Normalbeton ohne Fasern nach EN 206:2013 + A2:2021.
- Festigkeitsklassen C20/25 bis C50/60 entsprechend EN 206:2013 + A2:2021
- Gerissener oder ungerissener Beton.

### Nutzungsbedingungen:

- THE: Umweltbedingungen: Verankerungen unter trockenen Bedingungen in Innenräumen.
- TXE: Umweltbedingungen: Verankerungen unter trockenen Bedingungen in Innenräumen, im Freien (einschließlich Industrieatmosphäre und Meeresnähe) oder in Feuchträumen, wenn keine besonders aggressiven Bedingungen vorliegen. Besonders aggressive Bedingungen sind z. B. ständiges, abwechselndes Eintauchen in Seewasser oder der Spritzwasserbereich von Seewasser, chlorhaltige Atmosphäre in Schwimmbädern oder Atmosphäre mit extremer chemischer Verschmutzung (z. B. bei Rauchgasentschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden). Atmosphären unter Korrosionsbeständigkeitsklasse KBK III gemäß EN 1993-1-4:2006+A1:2015 Anhang A.
- Außen- und Innengewinde: das metrische Gewinde muss gleich oder größer sein als der Nettoquerschnitt des Betongewindes

| Betonschraube THE, TXE |              |
|------------------------|--------------|
| Verwendungszweck       | Anhang<br>B1 |
| Spezifikationen        |              |

### Bemessung:

- Die Bemessung der Verankerungen erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Unter Berücksichtigung der zu befestigenden Lasten werden prüfbare Berechnungen und Konstruktionszeichnungen angefertigt. Die Einbaulage wird in den Konstruktionszeichnungen angegeben (z. B.: Lage des Dübels zur Bewehrung oder zu Auflagen usw.).
- Die Bemessung von Verankerungen unter statischen oder quasi-statischen Lasten erfolgt nach Bemessungsmethode A gemäß: EN 1992-4:2018.
- Die Bemessung der Verankerungen unter seismischer Belastung wird durchgeführt in Übereinstimmung mit: EN 1992-4:2018. Die Dübel sind außerhalb kritischer Bereiche (z. B. plastischer Gelenke) der Betonkonstruktion anzuordnen. Abstandsmontage oder Unterfütterung mit Mörtel sind nicht erlaubt.
- Die Bemessung der Verankerungen unter Brandeinwirkung wird durchgeführt in Übereinstimmung mit: EN 1992-4:2018. Es muss sichergestellt werden, dass örtliches Abplatzen der Betondeckung nicht auftritt.

#### Einbau:

- Bohrlocherstellung nur mittels Hammerbohren: alle Größen und Einbautiefen.
- Montage der Verankerung durch entsprechend geschultes Personal unter der Aufsicht der Person, die für die technischen Belange der Baustelle verantwortlich zeichnet.
- Im Falle einer Fehlbohrung: Ein neues Bohrloch muss in einem Mindestabstand der doppelten Tiefe der Fehlbohrung erstellt werden, oder in geringerem Abstand, wenn die Fehlbohrung mit hochfestem Mörtel verfüllt wird und nur, wenn die Fehlbohrung nicht in Richtung der Schräg- oder Querlast liegt.
- Nach dem Einbau darf ein Weiterdrehen des Dübels nicht möglich sein.
- Der Dübelkopf muss vollflächig am Anbauteil anliegen und darf nicht beschädigt sein.

| Betonschraube THE, TXE |              |   |
|------------------------|--------------|---|
| Verwendungszweck       | Anhang<br>B2 | 3 |
| Spezifikationen        |              |   |

### Tabelle C1: Montagekennwerte

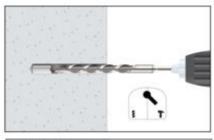
| Einbaukennwerte THE |                                  |                             |      | Merkmale                                                                     |      |      |                                                                    |                       |                                                                             |      |       |
|---------------------|----------------------------------|-----------------------------|------|------------------------------------------------------------------------------|------|------|--------------------------------------------------------------------|-----------------------|-----------------------------------------------------------------------------|------|-------|
|                     |                                  |                             |      | 6                                                                            |      |      |                                                                    | 3                     | 10                                                                          |      |       |
| h <sub>nom</sub>    | Nenn-Einbautiefe                 | e:                          | [mm] | 35                                                                           | 40   | 55   | 50                                                                 | 65                    | 55                                                                          | 75   | 85    |
| h <sub>ef</sub>     | effektive Veranke                |                             | [mm] | 26,0                                                                         | 30,0 | 43,0 | 37,5                                                               | 50,5                  | 41,5                                                                        | 58,5 | 67,0  |
| $d_0$               | Nenn-Bohrungso                   |                             | [mm] |                                                                              | 6    |      | 8                                                                  | 3                     |                                                                             | 10   |       |
| d <sub>f</sub>      | Durchmesser de<br>im Anbauteil ≤ | s Durchgangslochs           | [mm] |                                                                              | 9    |      | 1                                                                  | 2                     |                                                                             | 14   |       |
| $T_{inst,max}$      | Nenn-Einbaudre                   | hmoment ≤                   | [Nm] |                                                                              | 10   |      | 2                                                                  | 0                     |                                                                             | 30   |       |
| h <sub>1</sub>      | Bohrlochtiefe ≥                  |                             | [mm] | 45                                                                           | 50   | 65   | 60                                                                 | 75                    | 65                                                                          | 85   | 95    |
| h <sub>min</sub>    | Min. Betondicke:                 |                             | [mm] | 100                                                                          | 100  | 100  | 100                                                                | 100                   | 100                                                                         | 120  | 135   |
| L <sub>min</sub>    | Min. Gesamtläng                  | je Dübel:                   | [mm] | 35                                                                           | 40   | 55   | 50                                                                 | 65                    | 55                                                                          | 75   | 85    |
| t <sub>fix</sub>    | Dicke des Anbau                  | ıteils <sup>1)</sup> :      | [mm] | L-35                                                                         | L-40 | L-55 | L-50                                                               | L-65                  | L-55                                                                        | L-75 | L-85  |
|                     | Schlüsselweite                   | Sechskant Typ<br>E,N        | [mm] |                                                                              | 10   |      |                                                                    | 13                    |                                                                             | 15   |       |
|                     |                                  | Sechskant Typ K:            | [mm] | 10                                                                           |      |      | 13                                                                 |                       | 17                                                                          |      |       |
| CVA                 |                                  | Sechskant Typ J:            | [mm] | 13                                                                           |      |      |                                                                    |                       |                                                                             |      |       |
| SW                  |                                  | Außengewinde:               | [mm] |                                                                              | 13   |      | 17                                                                 |                       |                                                                             |      |       |
|                     |                                  | Verankerung von<br>Stangen: | [mm] |                                                                              | 13   |      |                                                                    | 13 / 17 <sup>2)</sup> |                                                                             |      |       |
|                     |                                  | Stift:                      | [mm] |                                                                              | 5    |      | 7                                                                  |                       | 8                                                                           |      |       |
|                     |                                  | Senkkopf:                   | [-]  | 30                                                                           |      | 45   |                                                                    | 50                    |                                                                             |      |       |
| TX                  | Tx                               | Flachkopf                   | [-]  |                                                                              | 40   |      | 45                                                                 |                       |                                                                             |      |       |
|                     |                                  | Flachrundkopf:              | [-]  | 30                                                                           |      |      |                                                                    |                       |                                                                             |      |       |
| dk                  | Senkkopfdurchm                   |                             | [mm] |                                                                              | 12,4 |      | 18                                                                 |                       |                                                                             | 21   |       |
| Smin                | Minimaler Achsabstand:           |                             | [mm] |                                                                              | 35   |      |                                                                    | 5                     |                                                                             | 50   |       |
| Cmin                | Min. Randabstand:                |                             | [mm] |                                                                              | 35   |      |                                                                    | 5                     |                                                                             | 40   |       |
|                     | Setzgerät:                       |                             |      | Bosch GDS 18E, 500<br>W. T <sub>max. Kraft</sub> 250 Nm<br>oder entsprechend |      |      | Makita<br>TW0350, 400<br>W. T <sub>max. Kraft</sub><br>350 Nm oder |                       | Bosch GDS 24, 800<br>W. T <sub>max. Kraft</sub> 600 Nm<br>oder entsprechend |      | 00 Nm |
|                     |                                  |                             |      | ·                                                                            |      |      | entspre                                                            | echend                |                                                                             |      |       |

1) L = Gesamtlänge der Verankerung

L = Gesamtlänge der Verankerung Buchse 13 für M10; Buchse 17 für M12

| Buchse 13 full MTO, Buchse 17 full MTZ |                                  |                          |          |                                                                       |         |      |       |      |           |      |       |  |
|----------------------------------------|----------------------------------|--------------------------|----------|-----------------------------------------------------------------------|---------|------|-------|------|-----------|------|-------|--|
| Einha                                  | ukonnworto TU                    | E                        | Merkmale |                                                                       |         |      |       |      |           |      |       |  |
| Einbaukennwerte THE                    |                                  |                          |          | 12                                                                    |         | 1    | 14    | 16   |           | 18   |       |  |
| h <sub>nom</sub>                       | Nenn-Einbautief                  | [mm]                     | 75       | 105                                                                   | 75      | 115  | 80    | 120  | 90        | 140  |       |  |
| h <sub>ef</sub>                        | effektive Verank                 | erungstiefe:             | [mm]     | 58,0                                                                  | 83,5    | 58,0 | 92,0  | 58,0 | 92,0      | 69,5 | 112,0 |  |
| $d_0$                                  | Nenn-Bohrungso                   | durchmesser:             | [mm]     | 1                                                                     | 2       | 1    | 14    | 1    | 6         | ,    | 18    |  |
| df                                     | Durchmesser de<br>im Anbauteil ≤ | s Durchgangslochs        | [mm]     | 1                                                                     | 6       | 1    | 18    |      | 0         | 22   |       |  |
| T <sub>inst,max</sub>                  | Nenn-Einbaudre                   | hmoment ≤                | [Nm]     | 5                                                                     | 0       | 7    | 70    | 8    | 0         | Ç    | 90    |  |
| h <sub>1</sub>                         | Bohrlochtiefe ≥                  |                          | [mm]     | 90                                                                    | 120     | 90   | 130   | 100  | 140       | 110  | 160   |  |
| h <sub>min</sub>                       | Min. Betondicke:                 |                          | [mm]     | 120                                                                   | 170     | 120  | 185   | 115  | 185       | 140  | 225   |  |
| L <sub>min</sub>                       | Min. Gesamtläng                  | ge Dübel:                | [mm]     | 75                                                                    | 105     | 75   | 115   | 80   | 120       | 90   | 140   |  |
| t <sub>fix</sub>                       | Dicke des Anbau                  | uteils 1):               | [mm]     | L-75                                                                  | L-105   | L-75 | L-115 | L-80 | L-<br>120 | L-90 | L-140 |  |
|                                        |                                  | Sechskant Typ<br>E,N     | [mm]     | 18                                                                    |         | 21   |       | 24   |           | 24   |       |  |
| sw                                     | Cablüagalwaita                   | Sechskant Typ K:         | [mm]     | 1                                                                     | 19      |      | 21    |      | 24        |      | 26    |  |
| SVV                                    | Schlüsselweite:                  | Verankerung von Stangen: | [mm]     | M12                                                                   | M12: 19 |      |       |      |           |      |       |  |
|                                        |                                  | Stift:                   | [mm]     | 1                                                                     | 0       | 1    | 11    | 1    | 3         | ,    | 14    |  |
| TX                                     | Tx Senkkopf                      |                          | [-]      | 5                                                                     | 5       |      |       | -    | -         |      |       |  |
| dk                                     | Senkkopfdurchmesser:             |                          | [mm]     | 2                                                                     | 4       |      |       | -    | -         |      |       |  |
| Smin                                   | Minimaler Achsabstand:           |                          | [mm]     | 7                                                                     | 5       | 8    | 30    | 80   |           | (    | 90    |  |
| Cmin                                   | Min. Randabstar                  | nd:                      | [mm]     | 4                                                                     | 5       | 5    | 50    | 50   |           | Ę    | 55    |  |
|                                        | Setzgerät:                       |                          |          | Bosch GDS 24, 800 W. T <sub>max. Kraft</sub> 600 Nm oder entsprechend |         |      |       |      |           | hend |       |  |

| Betonschraube THE |              |
|-------------------|--------------|
| Merkmale          | Anhang<br>C1 |
| Montagekennwerte  |              |


### **Tabelle C2: Einbaukennwerte TXE**

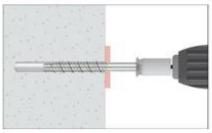
|                       |                                  |                          |      | Merkmale                                                                         |      |      |                                                                       |                       |      |      |      |            |  |
|-----------------------|----------------------------------|--------------------------|------|----------------------------------------------------------------------------------|------|------|-----------------------------------------------------------------------|-----------------------|------|------|------|------------|--|
| Einbau                | ikennwerte TXE                   |                          |      | 6                                                                                |      |      | 8                                                                     | 3                     | 10   |      | 1    | 12         |  |
| h <sub>nom</sub>      | Nenn-Einbautief                  | e:                       | [mm] | 35                                                                               | 40   | 55   | 50                                                                    | 65                    | 55   | 85   | 75   | 105        |  |
| h <sub>ef</sub>       | effektive Verank                 | erungstiefe:             | [mm] | 26,0                                                                             | 30,0 | 43,0 | 37,5                                                                  | 50,5                  | 41,5 | 67,0 | 58,0 | 83,5       |  |
| $d_0$                 | Nenn-Bohrungs                    |                          | [mm] |                                                                                  | 6    |      | 8                                                                     | 3                     | 1    | 0    | 1    | 2          |  |
| d <sub>f</sub>        | Durchmesser de<br>im Anbauteil ≤ | es Durchgangslochs       | [mm] |                                                                                  | 9    |      | 1                                                                     | 2                     | 1    | 4    | 1    | 6          |  |
| T <sub>inst,max</sub> | Nenn-Einbaudre                   | ehmoment ≤               | [Nm] |                                                                                  | 10   |      | 2                                                                     | :0                    | 3    | 0    | 5    | 0          |  |
| h <sub>1</sub>        | Bohrlochtiefe ≥                  |                          | [mm] | 45                                                                               | 50   | 65   | 60                                                                    | 75                    | 65   | 95   | 90   | 120        |  |
| h <sub>min</sub>      | Min. Betondicke                  | :                        | [mm] | 80                                                                               | 80   | 80   | 80                                                                    | 80                    | 80   | 100  | 120  | 160        |  |
| L <sub>min</sub>      | Min. Gesamtlän                   | ge Dübel:                | [mm] | 35                                                                               | 40   | 55   | 50                                                                    | 65                    | 55   | 85   | 75   | 105        |  |
| t <sub>fix</sub>      | Dicke des Anbauteils 1):         |                          | [mm] | L-35                                                                             | L-40 | L-55 | L-50                                                                  | L-65                  | L-55 | L-85 | L-75 | L-<br>105  |  |
|                       |                                  | Sechskant Typ:<br>E,N:   | [mm] | 10                                                                               |      | 13   |                                                                       | 1                     | 5    | 18   |      |            |  |
|                       | Schlüsselweite                   | Sechskant Typ: K:        | [mm] | 10                                                                               |      | 13   |                                                                       | 1                     | 7    | 1    | 9    |            |  |
| sw                    |                                  | Sechskant Typ: J:        | [mm] | 13                                                                               |      |      |                                                                       |                       |      |      |      |            |  |
| SVV                   |                                  | Außengewinde:            | [mm] |                                                                                  | 13   |      | 17                                                                    |                       |      |      |      |            |  |
|                       |                                  | Verankerung von Stangen: | [mm] |                                                                                  | 13   |      |                                                                       | 13 / 17 <sup>2)</sup> |      |      |      | <b></b>    |  |
|                       |                                  | Stift:                   | [mm] |                                                                                  | 5    |      |                                                                       | 7                     | 3    | 3    | 1    | 0          |  |
|                       |                                  | Senkkopf:                | [-]  |                                                                                  | 30   |      | 4                                                                     | 5                     | 5    | 0    | 5    | 55         |  |
| TX                    | Tx                               | Flachkopf                | [-]  |                                                                                  | 40   |      | 4                                                                     | 5                     | -    |      |      |            |  |
|                       |                                  | Flachrundkopf:           | [-]  |                                                                                  | 30   |      | -                                                                     |                       | -    |      |      |            |  |
| dk                    | Senkkopfdurchn                   |                          | [mm] |                                                                                  | 12,4 |      | _                                                                     | 8                     | 2    | 1    |      | 24         |  |
| Smin                  | Minimaler Achsabstand: [         |                          | [mm] |                                                                                  | 35   |      | 3                                                                     | 5                     | 5    | 0    | 7    | <b>'</b> 5 |  |
| Cmin                  | Min. Randabstand: [mr            |                          | [mm] |                                                                                  | 35   |      | 3                                                                     | 5                     | 40   |      |      | -5         |  |
|                       | Setzgerät                        |                          |      | Bosch GDS 18E,<br>500 W. T <sub>max. Kraft</sub><br>250 Nm, oder<br>entsprechend |      |      | Bosch GDS 24, 800 W. T <sub>max. Kraft</sub> 600 Nm oder entsprechend |                       |      |      |      |            |  |

| Betonschraube TXE |              |
|-------------------|--------------|
| Merkmale          | Anhang<br>C2 |
| Montagekennwerte  | 5-           |

L = Gesamtlänge der Verankerung Buchse 13 für M10; Buchse 17 für M12

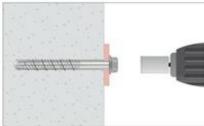
### **Einbauverfahren**




#### 1. BOHRLOCH ERSTELLEN

Bohrloch mit Bohrhammer drehschlagend, unter Verwendung des passenden Bohrerdurchmessers auf die richtige Bohrtiefe erstellen.




#### 2. AUSBLASEN UND REINIGEN

Das Bohrloch mit Hilfe einer Handpumpe, Druckluft oder eines Staubstaugers von Bohrmehl und Verunreinigungen reinigen:



#### 3. EINBAUEN

kraftbetriebenen Schlagschrauber oder einen verwenden, Drehmomentschlüssel der das maximale Drehmoment von T<sub>impact,max</sub> oder T<sub>inst,max</sub> nicht überschreitet. Das Innensechskant- bzw. Tx-Bit am Schlagschrauber Drehmomentschlüssel anbringen. Den Dübelkopf Innensechskant/Bit montieren.



#### 4. DREHMOMENT ANWENDEN

Den Dübel mit einem Schlagschrauber oder einem Drehmomentschlüssel durch das Anbauteil und in das Bohrloch einführen, bis der Dübelkopf mit dem Anbauteil in Berührung kommt. Der Dübel muss nach der Montage fest sitzen. Den Kopf des Dübels nicht drehen, um ihn zu lösen.

| Betonschraube THE, TXE |              |
|------------------------|--------------|
| Merkmale               | Anhang<br>C3 |
| Einbauverfahren        |              |

# Tabelle C3: Charakteristische Zugtragfähigkeit unter statischen oder quasi-statischen Lasten gemäß Bemessungsmethode A nach EN1992-4, Betonschraube THE

|                    | akteristische Zu<br>chen oder quas      |                  |         | Merkmale                           |        |      |      |                 |      |       |      |
|--------------------|-----------------------------------------|------------------|---------|------------------------------------|--------|------|------|-----------------|------|-------|------|
| gemä               | ß Bemessungs<br>nschraube THE           |                  | asten   |                                    | 6      |      |      | 8               |      | 10    |      |
| h <sub>nom</sub>   | Nenn-Einbautiefe                        | э:               | [mm]    | 35                                 | 40     | 55   | 50   | 65              | 55   | 75    | 85   |
| Zugtr              | agfähigkeit: Sta                        | hlversagen       |         |                                    |        |      |      |                 |      |       |      |
| $N_{Rk,s}$         | Charakteristische                       | e Tragfähigkeit: | [kN]    |                                    | 25,12  |      | 39   | ,14             |      | 54,81 |      |
| γMs                | Teilsicherheitsbe                       | iwert 1):        | [-]     |                                    |        |      | 1    | ,4              |      |       |      |
| Zugtr              | agfähigkeit: Ve                         | rsagen durch l   | łerausz | iehen (E                           | Beton) |      |      |                 |      |       |      |
| $N_{Rk,p}$         | Charakteristische Zungerissenem Beto    |                  | [kN]    | 5                                  |        |      |      |                 |      |       |      |
| $N_{Rk,p}$         | Charakteristische Z<br>gerissenem Beton |                  | [kN]    | ≥N <sup>0</sup> Rk.c <sup>2)</sup> |        |      |      |                 |      |       |      |
|                    | Vergrößerungsfa                         | C30/37           | [-]     | 1,16                               | 1,12   | 1,22 | 1,21 | 1,22            | 1,22 | 1,17  | 1,22 |
| $\Psi_{c}$         | Beton                                   | <u>C40/50</u>    | [-]     | 1,28                               | 1,22   | 1,41 | 1,39 | 1,41            | 1,41 | 1,30  | 1,41 |
|                    |                                         | C50/60           | [-]     | 1,39                               | 1,29   | 1,58 | 1,54 | 1,58            | 1,58 | 1,42  | 1,58 |
| Zugtr              | agfähigkeit: Be                         |                  | der Spa | lten                               |        |      |      |                 |      |       |      |
| h <sub>ef</sub>    | effektive Veranke                       |                  | [mm]    | 26,0                               | 30,0   | 43,0 | 37,5 | 50,5            | 41,5 | 58,5  | 67,0 |
| $k_{ucr,N}$        | Faktor für ungeri                       | ssenen Beton:    | [-]     |                                    |        |      | 11   | 1,0             |      |       |      |
| $k_{cr.N}$         | Faktor für gerisse                      | enen Beton:      | [-]     |                                    |        |      | 7    | ,7              |      |       |      |
| S <sub>cr,N</sub>  | Versagen durch                          | Achsabstand:     | [mm]    |                                    |        |      | 3 x  | h <sub>ef</sub> |      |       |      |
| C <sub>cr,N</sub>  | Betonausbruch                           | Randabstand      | [mm]    | 1,5 x h <sub>ef</sub>              |        |      |      |                 |      |       |      |
| S <sub>cr,sp</sub> | Versagen                                | Achsabstand:     | [mm]    | 90                                 | 90     | 170  | 130  | 200             | 140  | 190   | 210  |
| C <sub>cr,sp</sub> | durch Spalten                           | Randabstand      | [mm]    | 45                                 | 45     | 85   | 65   | 100             | 70   | 95    | 105  |
| γinst              | Widerstandsfähig                        | gkeit:           | [-]     | 1,2                                | 1,2    | 1,0  | 1,2  | 1,0             | 1,0  | 1,0   | 1,0  |

<sup>1)</sup> Bei Fehlen anderer nationaler Regelungen

<sup>2)</sup> Versagen durch Herausziehen nicht maßgebend. N<sup>0</sup><sub>Rk.c</sub> berechnet gemäß EN 1992-4

| Char               | - versagen durch H                         |                      |         | I KK.C.                                       | Oroominot | gornaio Ei |      |                   |      |      |       |  |
|--------------------|--------------------------------------------|----------------------|---------|-----------------------------------------------|-----------|------------|------|-------------------|------|------|-------|--|
|                    | akteristische Zug                          |                      |         | Merkmale                                      |           |            |      |                   |      |      |       |  |
|                    | chen oder quasi                            |                      | sten    |                                               | _         |            |      |                   |      |      |       |  |
|                    | iß Bemessungsn                             | nethode A,           |         | 1:                                            | 2         | 1          | 4    | 1                 | 6    | 1    | 8     |  |
|                    | nschraube THE                              |                      |         |                                               |           |            | =    |                   |      |      |       |  |
| h <sub>nom</sub>   | Nenn-Einbautiefe                           |                      | [mm]    | 75                                            | 105       | 75         | 115  | 80                | 120  | 90   | 140   |  |
|                    | agfähigkeit: Stal                          |                      |         | ,                                             |           |            |      |                   |      |      |       |  |
| $N_{Rk,s}$         | Charakteristische                          | Tragfähigkeit:       | [kN]    | 74,                                           | 48        | 105        | ,45  | 124               | 1,41 | 161  | ,56   |  |
| γMs                | Teilsicherheitsbei                         | wert <sup>1)</sup> : | [-]     |                                               |           |            |      | 1,4               |      |      |       |  |
| Zugtr              | agfähigkeit: Ver                           | sagen durch H        | erausz  | iehen (E                                      | Beton)    |            |      |                   |      |      |       |  |
| $N_{Rk,p}$         | Charakteristische Zuungerissenem Beton     |                      | [kN]    | ≥N <sup>0</sup> <sub>Rk.c</sub> <sup>2)</sup> |           |            |      |                   |      |      |       |  |
| $N_{Rk,p}$         | Charakteristische Zu<br>gerissenem Beton C |                      | [kN]    | ≥N <sup>0</sup> <sub>Rk.c</sub> <sup>2)</sup> |           |            |      |                   |      |      |       |  |
|                    | Vergrößerungsfak                           | C30/37               | [-]     | 1,16                                          | 1,22      | 1,21       | 1,20 | 1,12              | 1,16 | 1,22 | 1,17  |  |
| $\Psi_{c}$         | Beton                                      | C40/50               | [-]     | 1,29                                          | 1,41      | 1,39       | 1,37 | 1,21              | 1,28 | 1,40 | 1,32  |  |
|                    | Deton                                      | C50/60               | [-]     | 1,40                                          | 1,58      | 1,55       | 1,51 | 1,29              | 1,39 | 1,57 | 1,42  |  |
| Zugtr              | agfähigkeit: Bet                           | onausbruch o         | der Spa | lten                                          |           |            |      |                   |      |      |       |  |
| h <sub>ef</sub>    | effektive Veranke                          | rungstiefe:          | [mm]    | 58,0                                          | 83,5      | 58,0       | 92,0 | 58,0              | 92,0 | 69,5 | 112,0 |  |
| k <sub>ucr,N</sub> | Faktor für ungeris                         | senen Beton:         | [-]     |                                               |           |            | 1    | 1,0               |      |      |       |  |
| k <sub>cr.N</sub>  | Faktor für gerisse                         | nen Beton:           | [-]     |                                               |           |            |      | 7,7               |      |      |       |  |
| Scr,N              | Versagen durch                             | Achsabstand:         | [mm]    |                                               |           |            | 3    | x h <sub>ef</sub> |      |      |       |  |
| Ccr,N              | Betonausbruch                              | Randabstand          | [mm]    | 1,5 x h <sub>ef</sub>                         |           |            |      |                   |      |      |       |  |
| Scr,sp             | Versagen                                   | Achsabstand:         | [mm]    | 190                                           | 220       | 190        | 230  | 180               | 280  | 230  | 350   |  |
| C <sub>cr,sp</sub> | durch Spalten                              | Randabstand          | [mm]    | 95                                            | 110       | 95         | 115  | 90                | 140  | 115  | 175   |  |
| γinst              | Widerstandsfähig                           | keit:                | [-]     |                                               |           |            |      |                   |      | •    |       |  |

<sup>1)</sup> Bei Fehlen anderer nationaler Regelungen

<sup>&</sup>lt;sup>2)</sup> Versagen durch Herausziehen nicht maßgebend. N<sup>0</sup><sub>Rk.c</sub> berechnet gemäß EN 1992-4

| Betonschraube THE                                                                |              |
|----------------------------------------------------------------------------------|--------------|
| Merkmale                                                                         | Anhang<br>C4 |
| Charakteristische Zugtragfähigkeit unter statischen oder quasi-statischen Lasten |              |

<u>Tabelle C4: Charakteristische Zugtragfähigkeit unter statischen oder quasi-statischen Lasten gemäß Bemessungsmethode A nach EN1992-4, Betonschraube TXE</u>

| Statische Bemess Betonschen Nethon N | atischen oder of en Lasten gem ungsmethode in                                                         | versagen            | [mm<br>]<br>[kN] | 35                    | <b>6</b> 40                 | 55       | 50       | <b>8</b> 65         | <b>1</b> 55                 | <b>0</b><br>85              | <b>1</b> 75                 | <b>2</b>                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------|-----------------------|-----------------------------|----------|----------|---------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| Zugtrage NRk, Ch s Tra  yMs Te  Zugtrage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | fähigkeit: Stahl<br>narakteristische<br>agfähigkeit:<br>eilsicherheitsbeiwe<br>fähigkeit: Versa<br>narakteristische<br>igtragfähigkeit in | ert <sup>1)</sup> : | [kN]             | 35                    | _                           | 55       | 50       | 65                  | 55                          | 85                          | 75                          | 105                         |
| N <sub>Rk</sub> , Ch<br>s Tra<br>γ <sub>Ms</sub> Te<br>Zugtrage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | narakteristische<br>agfähigkeit:<br>eilsicherheitsbeiwe<br>fähigkeit: Versa<br>narakteristische<br>ugtragfähigkeit in                     | ert <sup>1)</sup> : |                  |                       | 47.50                       |          | •        |                     |                             |                             |                             | 1                           |
| s Tra γ <sub>Ms</sub> Te Zugtragt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | agfähigkeit:<br>bilsicherheitsbeiwe<br>fähigkeit: Versa<br>narakteristische<br>ugtragfähigkeit in                                         |                     |                  |                       | 47.50                       |          |          |                     |                             |                             |                             |                             |
| Zugtragt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | fähigkeit: Versa<br>narakteristische<br>igtragfähigkeit in                                                                                |                     | [-]              |                       | 17,58                       |          | 2        | 9,30                | 48                          | ,13                         | 69                          | ,67                         |
| Ch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | narakteristische<br>Igtragfähigkeit in                                                                                                    | agen durch          |                  |                       |                             |          |          | 1,                  | 5                           |                             |                             |                             |
| . Ch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ıgtragfähigkeit in                                                                                                                        |                     | n Hera           | uszie                 | hen (Bet                    | ton)     | 1        |                     |                             |                             |                             |                             |
| <sup>IN</sup> Rk, Zu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | igenssenem betoi                                                                                                                          | n C20/25:           | [kN]             | 5,5                   | ≥ <b>N</b> <sup>0</sup> Rkc | 12,<br>0 | 10,<br>0 | ≥N <sup>0</sup> Rkc | ≥ <b>N</b> <sup>0</sup> Rkc |
| <sup>IN</sup> Rk, Zu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | narakteristische<br>Igtragfähigkeit in<br>Prissenem Beton C                                                                               | 220/25:             | [kN]             | 1,0                   | 2,5                         | 7,5      | 5,0      | ≥N <sup>0</sup> Rkc | ≥ <b>N</b> <sup>0</sup> Rkc | ≥N <sup>0</sup> Rkc<br>2)   | 14,0                        | ≥ <b>N</b> <sup>0</sup> Rkc |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                           | C30/37              | [-]              | 1,1<br>2              | 1,10                        | 1,0<br>6 | 1,1<br>0 | 1,08                | 1,08                        | 1,08                        | 1,10                        | 1,08                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ergrößerungsfakt<br>Beton                                                                                                                 | C40/50              | [-]              | 1,2<br>1              | 1,18                        | 1,1<br>0 | 1,1<br>7 | 1,15                | 1,14                        | 1,14                        | 1,18                        | 1,15                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                           | C50/60              | [-]              | 1,2<br>9              | 1,24                        | 1,1<br>4 | 1,2<br>3 | 1,19                | 1,19                        | 1,18                        | 1,25                        | 1,19                        |
| Zugtragt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | fähigkeit: Beto                                                                                                                           | nausbruch           | oder             |                       | en                          |          |          |                     |                             |                             |                             |                             |
| h <sub>ef</sub> eff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | fektive Verankerui                                                                                                                        | ngstiefe:           | [mm<br>]         | 26,<br>0              | 30,0                        | 43,<br>0 | 37,<br>5 | 50,5                | 41,5                        | 67,0                        | 58,0                        | 83,5                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | aktor für ungerisse<br>eton:                                                                                                              | nen                 | [-]              |                       |                             |          |          | 11                  | ,0                          |                             |                             |                             |
| k <sub>cr.N</sub> Fa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ıktor für gerissene                                                                                                                       | n Beton:            | [-]              |                       |                             |          |          | 7,                  | 7                           |                             |                             |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ersagen A                                                                                                                                 | chsabstan           | [mm<br>]         |                       |                             |          |          | 3 x                 | h <sub>ef</sub>             |                             |                             |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | etonausbruch d                                                                                                                            | andabstan           | [mm<br>]         | 1,5 x h <sub>ef</sub> |                             |          |          |                     |                             |                             |                             |                             |
| S <sub>cr,s</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A<br>ersagen d:                                                                                                                           | chsabstan           | [mm<br>]         | 90                    | 110                         | 190      | 130      | 220                 | 140                         | 230                         | 190                         | 240                         |
| C <sub>cr,s</sub> du                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                           | andabstan           | [mm<br>]         | 45                    | 55                          | 95       | 65       | 110                 | 70                          | 115                         | 95                          | 120                         |
| p<br>γ <sub>inst</sub> Wi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | iderstandsfähigke                                                                                                                         | it:                 | [-]              | 1,2                   | 1,2                         | 1,2      | 1,2      | 1,2                 | 1,2                         | 1,2                         | 1,2                         | 1,0                         |

<sup>1)</sup> Bei Fehlen anderer nationaler Regelungen

| Betonschraube TXE                                                                | Audraus      |
|----------------------------------------------------------------------------------|--------------|
| Merkmale                                                                         | Anhang<br>C5 |
| Charakteristische Zugtragfähigkeit unter statischen oder quasi-statischen Lasten |              |

 $<sup>^{2)}</sup>$  Versagen durch Herausziehen nicht maßgebend.  $N^0_{Rkc}$  berechnet gemäß EN 1992-4

# Tabelle C5: Charakteristische Quertragfähigkeit unter statischen oder quasi-statischen Lasten gemäß Bemessungsmethode A nach EN1992-4, Betonschraube THE

|                     | kteristische Quertragfähig                                                                       |         |                |          | Merk      | male   |         |      |       |      |  |
|---------------------|--------------------------------------------------------------------------------------------------|---------|----------------|----------|-----------|--------|---------|------|-------|------|--|
| Laste               | unter statischen oder quasi-statischen<br>Lasten gemäß Bemessungsmethode<br>A, Betonschraube THE |         |                | 6        |           | 8      | 8       |      | 10    |      |  |
| h <sub>nom</sub>    | Nenn-Einbautiefe:                                                                                | [mm]    | 35             | 40       | 55        | 50     | 65      | 55   | 75    | 85   |  |
| Quert               | Quertragfähigkeit: Stahlversagen ohne Hebelarm                                                   |         |                |          |           |        |         |      |       |      |  |
| $V_{Rk,s}$          | Charakteristische<br>Tragfähigkeit:                                                              | [kN]    |                | 12,53    |           |        | ,57     |      | 27,40 |      |  |
| k <sub>7</sub>      | Faktor für Duktilität 2):                                                                        | [-]     | 0,78 0,80 0,78 |          | 0,80      |        |         | 0,80 |       |      |  |
| γMs                 | Teilsicherheitsbeiwert 1):                                                                       | [-]     | 1,5            |          |           |        |         |      |       |      |  |
| Quert               | Quertragfähigkeit: Stahlversagen mit Hebelarm                                                    |         |                |          |           |        |         |      |       |      |  |
| M <sup>0</sup> Rk,s | Charakteristische Biegemomente:                                                                  | [Nm]    |                | 21,6     |           | 44,6   |         | 78,3 |       |      |  |
| γMs                 | Teilsicherheitsbeiwert 1):                                                                       | [-]     |                |          |           | 1      | ,5      |      |       |      |  |
| Quert               | ragfähigkeit: Versagen dur                                                                       | ch Beto | nausbru        | ch auf c | ler lasta | bgewan | dten Se | ite  |       |      |  |
| k <sub>8</sub>      | Betonausbruch-Faktor:                                                                            | [-]     | 2,05           | 1,44     | 1,15      | 1,80   | 1,27    | 1,95 | 1,32  | 2,00 |  |
| γinst               | Montagesicherheitsbeiwert:                                                                       | [-]     |                |          |           | 1      | ,0      |      |       |      |  |
| Quert               | ragfähigkeit: Versagen dur                                                                       | ch Beto | nkanten        | bruch    |           |        |         |      |       |      |  |
| lf                  | Effektive Verankerungstiefe unter Querbeanspruchung:                                             | [mm]    | 26,0           | 30,0     | 43,0      | 37,5   | 50,5    | 41,5 | 58,5  | 67,0 |  |
| d <sub>nom</sub>    | Außendurchmesser der<br>Verankerung:                                                             | [mm]    | 6              |          | 8         |        | 10      |      |       |      |  |
| γinst               | Montagesicherheitsbeiwert:                                                                       | [-]     |                | 1,0      |           |        |         |      | ·     |      |  |

- 1) Bei Fehlen anderer nationaler Regelungen
- Der Durchmesser des Durchgangslochs entspricht nicht den in EN 1992-4 Tabelle 6.1 angegebenen Werten. Der Widerstand der Gruppe unter Querlast wurde jedoch in der Bewertung durch Tests nachgewiesen und im Faktor k7 berücksichtigt.

| Charakteristische Quertragfähigkeit unter statischen oder quasi-statischen |                                                      |         | Merkmale |          |           |        |          |      |      |       |  |  |
|----------------------------------------------------------------------------|------------------------------------------------------|---------|----------|----------|-----------|--------|----------|------|------|-------|--|--|
| Laster                                                                     | Lasten gemäß Bemessungsmethode A, Betonschraube THE  |         |          | 12       |           | 14     |          | 16   |      | 8     |  |  |
| h <sub>nom</sub>                                                           | Nenn-Einbautiefe:                                    | [mm]    | 75       | 105      | 75        | 115    | 80       | 120  | 90   | 140   |  |  |
| Querti                                                                     | Quertragfähigkeit: Stahlversagen ohne Hebelarm       |         |          |          |           |        |          |      |      |       |  |  |
| V <sub>Rk,s</sub>                                                          | Charakteristische<br>Tragfähigkeit:                  | [kN]    | 37       | ,24      | 52        | ,72    | 57       | ,97  | 80,  | ,78   |  |  |
| <b>k</b> <sub>7</sub>                                                      | Faktor für Duktilität 2):                            | [-]     |          | 1,00     |           |        |          |      |      |       |  |  |
| γMs                                                                        | Teilsicherheitsbeiwert 1):                           |         | 1,5      |          |           |        |          |      |      |       |  |  |
| Querti                                                                     | Quertragfähigkeit: Stahlversagen mit Hebelarm        |         |          |          |           |        |          |      |      |       |  |  |
| M <sup>0</sup> <sub>Rk,s</sub>                                             | Charakteristische Biegemomente:                      | [Nm]    | 126,5    |          | 218,3     |        | 279,75   |      | 42   | 1,2   |  |  |
| γMs                                                                        | Teilsicherheitsbeiwert 1):                           | [-]     |          |          |           | 1      | ,5       |      |      |       |  |  |
| Querti                                                                     | ragfähigkeit: Versagen dur                           | ch Beto | nausbru  | ch auf c | ler lasta | bgewan | dten Sei | ite  |      |       |  |  |
| k <sub>8</sub>                                                             | Betonausbruch-Faktor:                                | [-]     | 2,33     | 2,00     | 2,55      | 2,00   | 2,14     | 2,00 | 2,66 | 2,00  |  |  |
| γinst                                                                      | Montagesicherheitsbeiwert:                           | [-]     |          |          |           | 1      | ,0       |      |      |       |  |  |
| Querti                                                                     | ragfähigkeit: Versagen dur                           | ch Beto | nkanten  | bruch    |           |        |          |      |      |       |  |  |
| lf                                                                         | Effektive Verankerungstiefe unter Querbeanspruchung: | [mm]    | 58,0     | 83,5     | 58,0      | 92,0   | 58,0     | 92,0 | 69,5 | 112,0 |  |  |
| d <sub>nom</sub>                                                           | Außendurchmesser der<br>Verankerung:                 | [mm]    | 12       |          | 14        |        | 16       |      | 18   |       |  |  |
| γinst                                                                      | Montagesicherheitsbeiwert:                           | [-]     |          |          |           | 1      | ,0       |      |      |       |  |  |

<sup>&</sup>lt;sup>1)</sup> Bei Fehlen anderer nationaler Regelungen

Der Durchmesser des Durchgangslochs entspricht nicht den in EN 1992-4 Tabelle 6.1 angegebenen Werten. Der Widerstand der Gruppe unter Querlast wurde jedoch in der Bewertung durch Tests nachgewiesen und im Faktor k7 berücksichtigt.

| Betonschraube THE                                                                 |              |
|-----------------------------------------------------------------------------------|--------------|
| Merkmale                                                                          | Anhang<br>C6 |
| Charakteristische Quertragfähigkeit unter statischen oder quasi-statischen Lasten |              |

# <u>Tabelle C6: Charakteristische Quertragfähigkeit unter statischen oder quasi-statischen Lasten gemäß Bemessungsmethode A nach EN1992-4, Betonschraube TXE</u>

|                                                                                                      | kteristische Quertragfähig                           | keit    |         |         |           | N      | lerkma | le      |      |        |      |  |
|------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------|---------|---------|-----------|--------|--------|---------|------|--------|------|--|
| unter statischen oder quasi-<br>statischen Lasten gemäß<br>Bemessungsmethode A,<br>Betonschraube TXE |                                                      | 6       |         |         | 8         |        | 10     |         | 12   |        |      |  |
| h <sub>nom</sub>                                                                                     | Nenn-Einbautiefe:                                    | [mm]    | 35      | 40      | 55        | 50     | 65     | 55      | 85   | 75     | 105  |  |
| Quertragfähigkeit: Stahlversagen ohne Hebelarm                                                       |                                                      |         |         |         |           |        |        |         |      |        |      |  |
| V <sub>Rk,s</sub>                                                                                    | Charakteristische<br>Tragfähigkeit:                  | [kN]    | 8,79    |         |           | 14     | ,65    | 24      | ,06  | 34,    | 84   |  |
| k <sub>7</sub>                                                                                       | Faktor für Duktilität 2):                            | [-]     | 1,00    |         |           |        |        |         |      |        |      |  |
| γMs                                                                                                  | Teilsicherheitsbeiwert 1):                           | [-]     | 1,25    |         |           |        |        |         |      |        |      |  |
| Quert                                                                                                | ragfähigkeit: Stahlversage                           | n mit H | ebelarn | n       |           |        |        |         |      |        |      |  |
| M <sup>0</sup> Rk,s                                                                                  | Charakteristische Biegemomente:                      | [Nm]    |         | 14,52   |           | 31,17  |        | 65,68   |      | 146,01 |      |  |
| γMs                                                                                                  | Teilsicherheitsbeiwert 1):                           | [-]     |         |         |           |        | 1,25   |         |      |        |      |  |
| Quert                                                                                                | ragfähigkeit: Versagen du                            | ch Beto | nausb   | ruch au | uf der la | astabg | ewandt | en Seit | е    |        |      |  |
| k <sub>8</sub>                                                                                       | Betonausbruch-Faktor:                                | [mm]    | 1,87    | 1,66    | 1,05      | 1,71   | 1,39   | 1,83    | 2,00 | 2,19   | 2,00 |  |
| γinst                                                                                                | Montagesicherheitsbeiwert:                           | [-]     |         |         |           |        | 1,0    | •       |      | •      |      |  |
| Quert                                                                                                | ragfähigkeit: Versagen dui                           | ch Beto | onkante | enbruc  | h         |        |        |         |      |        |      |  |
| lf                                                                                                   | Effektive Verankerungstiefe unter Querbeanspruchung: | [mm]    | 26,0    | 30,0    | 43,0      | 37,5   | 50,5   | 41,5    | 67,0 | 58,0   | 83,5 |  |
| d <sub>nom</sub>                                                                                     | Außendurchmesser der<br>Verankerung:                 | [mm]    | 6       |         | 8         |        | 10     |         | 12   |        |      |  |
| γinst                                                                                                | Montagesicherheitsbeiwert:                           | [-]     |         |         |           |        | 1,0    |         |      |        |      |  |

<sup>1)</sup> Bei Fehlen anderer nationaler Regelungen

| Betonschraube TXE                                                                 |              |
|-----------------------------------------------------------------------------------|--------------|
| Merkmale                                                                          | Anhang<br>C7 |
| Charakteristische Quertragfähigkeit unter statischen oder quasi-statischen Lasten |              |

Der Durchmesser des Durchgangslochs entspricht nicht den in EN 1992-4 Tabelle 6.1 angegebenen Werten. Der Widerstand der Gruppe unter Querlast wurde jedoch in der Bewertung durch Tests nachgewiesen und im Faktor k7 berücksichtigt.

### Tabelle C7: Verschiebung unter Betriebslast, Betonschraube THE

| Verso                                                       | chiebung unter Betriebslast                               |          |           |          |         | Merk | male |       |       |       |  |  |
|-------------------------------------------------------------|-----------------------------------------------------------|----------|-----------|----------|---------|------|------|-------|-------|-------|--|--|
|                                                             | nschraube THE                                             | ,        | 6         |          |         | 8    | 8    |       | 10    |       |  |  |
| h <sub>nom</sub>                                            | Nenn-Einbautiefe:                                         | [mm]     | 35        | 40       | 55      | 50   | 65   | 55    | 75    | 85    |  |  |
| Verschiebungen unter Zugbeanspruchung in ungerissenem Beton |                                                           |          |           |          |         |      |      |       |       |       |  |  |
| N                                                           | Zuglasteinwirkung:                                        | [kN]     | 1,98      | 3,85     | 6,61    | 4,48 | 8,41 | 6,26  | 10,48 | 12,85 |  |  |
| δνο                                                         | Kurzfristige Verschiebung:                                | [mm]     | 0,03      | 0,05     | 0,05    | 0,04 | 0,05 | 0,06  | 0,09  | 0,10  |  |  |
| δ <sub>N∞</sub>                                             | Langfristige Verschiebung:                                | [mm]     | 0,25      | 0,30     | 0,30    | 0,26 | 0,35 | 0,30  | 0,42  | 0,65  |  |  |
| Verso                                                       | Verschiebungen unter Zugbeanspruchung in gerissenem Beton |          |           |          |         |      |      |       |       |       |  |  |
| N                                                           | Zuglasteinwirkung:                                        | [kN]     | 1,81      | 2,69     | 4,62    | 3,14 | 5,88 | 4,38  | 7,34  | 8,99  |  |  |
| $\delta_{N0}$                                               | Kurzfristige Verschiebung:                                | [mm]     | 0,08      | 0,09     | 0,10    | 0,09 | 0,20 | 0,11  | 0,35  | 0,44  |  |  |
| δ <sub>N∞</sub>                                             | Langfristige Verschiebung:                                | [mm]     | 0,99      | 0,99     | 1,60    | 1,08 | 1,92 | 1,13  | 2,00  | 1,91  |  |  |
| Verso                                                       | chiebungen unter Querbean                                 | spruchi  | ung in u  | ngerisse | enem Be | ton  |      |       |       |       |  |  |
| V                                                           | Querlasteinwirkung:                                       | [kN]     | 5,97      | 5,54     | 5,97    | 9,32 | 9,32 | 12,21 | 13,05 | 13,05 |  |  |
| δνο                                                         | Kurzfristige Verschiebung:                                | [mm]     | 1,50      | 1,61     | 1,70    | 1,03 | 1,03 | 1,11  | 1,21  | 1,24  |  |  |
| δ∨∞                                                         | Langfristige Verschiebung:                                | [mm]     | 2,25      | 2,41     | 2,55    | 1,54 | 1,54 | 1,66  | 1,81  | 1,86  |  |  |
| Versc                                                       | hiebungen unter Querbeanspr                               | uchung i | n gerisse | enem Bet | on      |      |      |       |       |       |  |  |
| V                                                           | Querlasteinwirkung:                                       | [kN]     | 4,46      | 3,88     | 5,32    | 6,78 | 7,47 | 8,55  | 9,68  | 13,05 |  |  |
| $\delta_{V0}$                                               | Kurzfristige Verschiebung:                                | [mm]     | 0,95      | 0,96     | 1,45    | 0,66 | 0,70 | 0,74  | 1,03  | 1,09  |  |  |
| δ∨∞                                                         | Langfristige Verschiebung:                                | [mm]     | 1,42      | 1,44     | 2,17    | 0,99 | 1,05 | 1,11  | 1,54  | 1,63  |  |  |

| Vers                 | Verschiebung unter Betriebslast,                            |         |          | Merkmale |          |       |       |       |       |       |  |  |  |
|----------------------|-------------------------------------------------------------|---------|----------|----------|----------|-------|-------|-------|-------|-------|--|--|--|
| Betonschraube THE    |                                                             | 12      |          | 14       |          | 16    |       | 18    |       |       |  |  |  |
| h <sub>nom</sub>     | Nenn-Einbautiefe:                                           | [mm]    | 75 105   |          | 75       | 115   | 80    | 120   | 90    | 140   |  |  |  |
| Vers                 | Verschiebungen unter Zugbeanspruchung in ungerissenem Beton |         |          |          |          |       |       |       |       |       |  |  |  |
| N                    | Zuglasteinwirkung:                                          | [kN]    | 10,35    | 17,87    | 10,35    | 20,67 | 10,35 | 20,67 | 13,57 | 27,77 |  |  |  |
| $\delta_{\text{N0}}$ | Kurzfristige Verschiebung:                                  | [mm]    | 0,10     | 0,11     | 0,12     | 0,15  | 0,12  | 0,20  | 0,17  | 0,23  |  |  |  |
| $\delta_{N^\infty}$  | Langfristige Verschiebung:                                  | [mm]    | 0,40     | 0,68     | 0,46     | 0,70  | 0,60  | 0,74  | 0,50  | 0,71  |  |  |  |
| Vers                 | Verschiebungen unter Zugbeanspruchung in gerissenem Beton   |         |          |          |          |       |       |       |       |       |  |  |  |
| N                    | Zuglasteinwirkung:                                          | [kN]    | 7,24     | 12,51    | 7,24     | 14,47 | 7,24  | 14,47 | 9,50  | 19,44 |  |  |  |
| $\delta_{N0}$        | Kurzfristige Verschiebung:                                  | [mm]    | 0,24     | 0,46     | 0,34     | 0,51  | 0,39  | 0,59  | 0,41  | 0,55  |  |  |  |
| δ <sub>N∞</sub>      | Langfristige Verschiebung:                                  | [mm]    | 1,32     | 1,78     | 1,40     | 1,80  | 1,41  | 1,85  | 1,56  | 2,08  |  |  |  |
| Vers                 | chiebungen unter Querbean                                   | spruchu | ıng in u | ngeriss  | enem Be  | ton   | •     | •     |       |       |  |  |  |
| ٧                    | Querlasteinwirkung:                                         | [kN]    | 17,73    | 17,73    | 25,10    | 25,10 | 22,14 | 33,12 | 36,10 | 38,47 |  |  |  |
| $\delta_{V0}$        | Kurzfristige Verschiebung:                                  | [mm]    | 1,65     | 1,65     | 1,87     | 1,87  | 1,04  | 1,61  | 1,96  | 2,03  |  |  |  |
| δ∨∞                  | Langfristige Verschiebung:                                  | [mm]    | 2,48     | 2,48     | 2,81     | 2,81  | 1,56  | 2,42  | 2,94  | 3,05  |  |  |  |
| Vers                 | chiebungen unter Querbean                                   | spruchu | ıng in g | erissen  | em Betor | 1     | •     | •     |       |       |  |  |  |
| V                    | Querlasteinwirkung:                                         | [kN]    | 16,88    | 17,73    | 18,47    | 25,10 | 15,50 | 28,94 | 25,27 | 38,47 |  |  |  |
| δνο                  | Kurzfristige Verschiebung:                                  | [mm]    | 1,30     | 1,34     | 1,40     | 1,70  | 0,86  | 1,56  | 1,34  | 1,80  |  |  |  |
| δ∨∞                  | Langfristige Verschiebung:                                  | [mm]    | 1,95     | 2,01     | 2,10     | 2,55  | 1,29  | 2,34  | 2,01  | 2,70  |  |  |  |

| Betonschraube THE                               |              |
|-------------------------------------------------|--------------|
| Merkmale                                        | Anhang<br>C8 |
| Verschiebungen unter Zug- und Querbeanspruchung |              |

### Tabelle C8: Verschiebung unter Betriebslast, Betonschraube TXE

| Verso                                                       | chiebung unter Betriebslast,                              |        | Merkmale |         |       |       |      |      |       |       |       |  |
|-------------------------------------------------------------|-----------------------------------------------------------|--------|----------|---------|-------|-------|------|------|-------|-------|-------|--|
|                                                             | nschraube TXE                                             |        |          | 6       |       | 8     | 8    |      | 10    |       | 12    |  |
| h <sub>nom</sub>                                            | Nenn-Einbautiefe:                                         | [mm]   | 35       | 40      | 55    | 50    | 65   | 55   | 85    | 75    | 105   |  |
| Verschiebungen unter Zugbeanspruchung in ungerissenem Beton |                                                           |        |          |         |       |       |      |      |       |       |       |  |
| N                                                           | Zuglasteinwirkung:                                        | [kN]   | 2,34     | 3,21    | 4,93  | 4,25  | 7,00 | 5,22 | 10,71 | 8,62  | 17,88 |  |
| δνο                                                         | Kurzfristige Verschiebung:                                | [mm]   | 0,04     | 0,04    | 0,06  | 0,09  | 0,10 | 0,10 | 0,12  | 0,12  | 0,18  |  |
| δ <sub>N∞</sub>                                             | Langfristige Verschiebung:                                | [mm]   | 0,28     | 0,30    | 0,30  | 0,35  | 0,40 | 0,40 | 0,45  | 0,45  | 0,50  |  |
| Verso                                                       | Verschiebungen unter Zugbeanspruchung in gerissenem Beton |        |          |         |       |       |      |      |       |       |       |  |
| N                                                           | Zuglasteinwirkung:                                        | [kN]   | 0,56     | 1,07    | 3,20  | 2,06  | 4,90 | 3,65 | 7,50  | 5,63  | 12,51 |  |
| $\delta_{N0}$                                               | Kurzfristige Verschiebung:                                | [mm]   | 0,06     | 0,07    | 0,14  | 0,13  | 0,15 | 0,17 | 0,18  | 0,20  | 0,23  |  |
| δ <sub>N∞</sub>                                             | Langfristige Verschiebung:                                | [mm]   | 0,60     | 0,53    | 0,86  | 0,55  | 1,11 | 0,57 | 0,92  | 0,67  | 1,06  |  |
| Verso                                                       | hiebungen unter Querbeans                                 | pruchu | ng in u  | ngeriss | senem | Beton |      | •    |       | •     |       |  |
| V                                                           | Querlasteinwirkung:                                       | [kN]   | 4,36     | 5,06    | 5,06  | 7,70  | 8,37 | 9,50 | 13,75 | 18,90 | 19,91 |  |
| δνο                                                         | Kurzfristige Verschiebung:                                | [mm]   | 1,70     | 1,85    | 1,85  | 1,89  | 1,90 | 2,14 | 2,26  | 2,38  | 2,35  |  |
| δ∨∞                                                         | Langfristige Verschiebung:                                | [mm]   | 2,60     | 2,78    | 2,78  | 2,84  | 2,85 | 3,21 | 3,39  | 3,57  | 3,53  |  |
| Verso                                                       | hiebungen unter Querbeans                                 | pruchu | ng in g  | erisser | em Be | ton   |      | •    |       | •     |       |  |
| V                                                           | Querlasteinwirkung:                                       | [kN]   | 3,40     | 3,80    | 4,00  | 5,40  | 6,80 | 6,70 | 13,75 | 13,20 | 19,91 |  |
| $\delta_{V0}$                                               | Kurzfristige Verschiebung:                                | [mm]   | 1,72     | 1,80    | 1,81  | 1,84  | 1,87 | 1,95 | 2,25  | 2,16  | 2,35  |  |
| δ∨∞                                                         | Langfristige Verschiebung:                                | [mm]   | 2,58     | 2,70    | 2,72  | 2,76  | 2,81 | 2,93 | 3,38  | 3,24  | 3,53  |  |

| Betonschraube TXE                               |              |
|-------------------------------------------------|--------------|
| Merkmale                                        | Anhang<br>C9 |
| Verschiebungen unter Zug- und Querbeanspruchung |              |

# <u>Tabelle C9: Wesentliche Merkmale für seismische Belastung, Kategorie C1, Betonschraube THE</u>

|                      | tliche Merkmale für seism                                  | ische   | Merkmale |         |          |          |                     |       |        |        |  |  |  |
|----------------------|------------------------------------------------------------|---------|----------|---------|----------|----------|---------------------|-------|--------|--------|--|--|--|
|                      | ıng, Kategorie C1,<br>chraube THE                          |         | 6        |         | 8        |          | 10                  | 12    | 14     | 18     |  |  |  |
| h <sub>nom</sub>     | Nenn-Einbautiefe:                                          | [mm]    | 40       | 55      | 50       | 65       | 85                  | 105   | 115    | 140    |  |  |  |
| Stahlve              | ersagen für Zug- und Quer                                  | last    |          |         |          |          |                     |       |        |        |  |  |  |
| $N_{\text{Rk,s,C1}}$ | Charakteristische<br>Tragfähigkeit:                        | [kN]    | 25,12    | 25,12   | 39,14    | 39,14    | 54,81               | 74,48 | 105,45 | 161,56 |  |  |  |
| γMs                  | Teilsicherheitsbeiwert 1):                                 | [-]     |          |         |          |          | 1,4                 |       |        |        |  |  |  |
| V <sub>Rk,s,C1</sub> | Charakteristische<br>Tragfähigkeit:                        | [kN]    | 5,9      | 9,4     | 8,7      | 11,7     | 19,2                | 23,5  | 31,7   | 44,1   |  |  |  |
| γMs                  | Teilsicherheitsbeiwert 1):                                 | [-]     |          |         |          |          | 1,5                 |       |        |        |  |  |  |
| αgap                 | Faktor für Ringspalt:                                      | [-]     |          |         |          |          | 0,5                 |       |        |        |  |  |  |
| Versag               | en durch Herausziehen                                      |         |          |         |          |          |                     |       |        |        |  |  |  |
| N <sub>Rk,p,C1</sub> | Charakteristische<br>Tragfähigkeit in<br>gerissenem Beton: | [kN]    | 5,0      | 5,0     | 6,2      | 8,8      | 14,7                | 18,2  | 23,2   | 35,3   |  |  |  |
| γinst                | Widerstandsfähigkeit:                                      | [-]     | 1,2      | 1,0     | 1,2      | 1,0      | 1,0                 | 1,0   | 1,0    | 1,0    |  |  |  |
| Versag               | en durch Betonausbruch                                     |         |          |         |          |          |                     |       | •      |        |  |  |  |
| h <sub>ef</sub>      | effektive<br>Verankerungstiefe:                            | [mm]    | 30,0     | 43,0    | 37,5     | 50,5     | 67,0                | 83,5  | 92,0   | 112,0  |  |  |  |
| Scr,N                | Achsabstand:                                               | [mm]    |          |         |          | 3        | x h <sub>ef</sub>   |       |        |        |  |  |  |
| Ccr,N                | Randabstand:                                               | [mm]    |          |         |          | 1,       | 5 x h <sub>ef</sub> |       |        |        |  |  |  |
| γinst                | Montagesicherheitsbeiwert:                                 | [-]     | 1,2      | 1,0     | 1,2      | 1,0      | 1,0                 | 1,0   | 1,0    | 1,0    |  |  |  |
| Versag               | en durch Betonausbruch                                     | auf der | lastab   | gewandt | en Seite | <b>;</b> |                     |       |        |        |  |  |  |
| k <sub>8</sub>       | Betonausbruch-Faktor:                                      | [-]     | 1,44     | 1,15    | 1,80     | 1,27     | 2,00                | 2,00  | 2,00   | 2,00   |  |  |  |
| γinst                | Montagesicherheitsbeiwert:                                 | [-]     |          |         |          |          | 1,0                 |       |        |        |  |  |  |
| Versag               | en durch Betonkantenbru                                    | ch      |          |         |          |          |                     |       |        |        |  |  |  |
|                      | Effektive                                                  |         |          |         |          |          |                     |       |        |        |  |  |  |
| ℓf                   | Verankerungstiefe unter<br>Querbeanspruchung:              | [mm]    | 30,0     | 43,0    | 37,5     | 50,5     | 67,0                | 83,5  | 92,0   | 112,0  |  |  |  |
| $d_{nom}$            | Außendurchmesser der<br>Verankerung:                       | [mm]    | 6        | 6       | 8        | 8        | 10                  | 12    | 14     | 18     |  |  |  |
| γinst                | Montagesicherheitsbeiwert:                                 | [-]     |          |         |          |          | 1,0                 |       |        |        |  |  |  |
|                      | 1) Doi Fohlon anderer notionaler                           |         |          |         |          |          |                     |       |        |        |  |  |  |

<sup>1)</sup> Bei Fehlen anderer nationaler Regelungen

| Betonschraube THE                                           |               |
|-------------------------------------------------------------|---------------|
| Merkmale                                                    | Anhang<br>C10 |
| Wesentliche Merkmale für seismische Belastung, Kategorie C1 |               |

# <u>Tabelle C10: Wesentliche Merkmale für seismische Belastung, Kategorie C1, Betonschraube TXE</u>

|                      | liche Merkmale für seismis                                 | sche     | Merkmale |         |       |       |                   |       |       |       |  |  |
|----------------------|------------------------------------------------------------|----------|----------|---------|-------|-------|-------------------|-------|-------|-------|--|--|
|                      | ng, Kategorie C1,<br>chraube TXE                           |          | 6        |         | 8     |       | 10                |       | 12    |       |  |  |
| h <sub>nom</sub>     | Nenn-Einbautiefe:                                          | [mm]     | 40       | 55      | 50    | 65    | 55                | 85    | 75    | 105   |  |  |
| Quertra              | gfähigkeit: Stahlversagen                                  | ohne H   | ebelarm  |         |       |       |                   |       |       |       |  |  |
| N <sub>Rk,s,C1</sub> | Charakteristische<br>Tragfähigkeit:                        | [kN]     | 17,5     | 58      | 29    | ,30   | 48                | ,13   | 69    | ),67  |  |  |
| γMs                  | Teilsicherheitsbeiwert 1):                                 | [-]      |          |         |       | 1     | ,5                |       |       |       |  |  |
| V <sub>Rk,s,C1</sub> | Charakteristische<br>Tragfähigkeit:                        | [kN]     | 5,83     | 8,44    | 8,04  | 10,00 | 15,16             | 19,86 | 25,96 | 30,80 |  |  |
| γMs                  | Teilsicherheitsbeiwert 1):                                 | [-]      |          |         | •     | 1,:   | 25                | •     |       |       |  |  |
| αgap                 | Faktor für Ringspalt:                                      | [-]      |          |         |       | 0     | ,5                |       |       |       |  |  |
| Versage              | en durch Herausziehen                                      |          |          |         |       |       |                   |       |       |       |  |  |
| N <sub>Rk,p,C1</sub> | Charakteristische<br>Tragfähigkeit in<br>gerissenem Beton: | [kN]     | 2,12     | 5,70    | 3,64  | 8,77  | 6,69              | 12,84 | 9,87  | 21,53 |  |  |
| γinst                | Widerstandsfähigkeit:                                      | [-]      | 1,2      | 1,2     | 1,2   | 1,2   | 1,2               | 1,2   | 1,2   | 1,0   |  |  |
| Versage              | en durch Betonausbruch                                     |          |          |         |       |       |                   |       |       |       |  |  |
| h <sub>ef</sub>      | effektive<br>Verankerungstiefe:                            | [mm]     | 30,0     | 43,0    | 37,5  | 50,5  | 41,5              | 67,0  | 58,0  | 83,5  |  |  |
| Scr,N                | Achsabstand:                                               | [mm]     |          |         |       | 3 x   | h <sub>ef</sub>   |       |       |       |  |  |
| Ccr,N                | Randabstand:                                               | [mm]     |          |         |       | 1,5   | x h <sub>ef</sub> |       |       |       |  |  |
| γinst                | Montagesicherheitsbeiwert:                                 | [-]      | 1,2      | 1,2     | 1,2   | 1,2   | 1,2               | 1,2   | 1,2   | 1,0   |  |  |
| Versage              | en durch Betonausbruch a                                   | uf der l | astabgev | /andten | Seite |       |                   |       |       |       |  |  |
| k <sub>8</sub>       | Betonausbruch-Faktor:                                      | [-]      | 1,66     | 1,05    | 1,71  | 1,39  | 1,83              | 2,00  | 2,19  | 2,00  |  |  |
| γinst                | Montagesicherheitsbeiwert:                                 | [-]      |          |         |       | 1     | ,0                |       |       |       |  |  |
| Versage              | en durch Betonkantenbruc                                   | h        |          |         |       |       |                   |       |       |       |  |  |
|                      | Effektive                                                  |          |          |         |       |       |                   |       |       |       |  |  |
| lf                   | Verankerungstiefe unter<br>Querbeanspruchung:              | [mm]     | 30,0     | 43,0    | 37,5  | 50,5  | 41,5              | 67,0  | 58,0  | 83,5  |  |  |
| d <sub>nom</sub>     | Außendurchmesser der<br>Verankerung:                       | [mm]     | 6        |         | 8     |       | 10                |       | 12    |       |  |  |
| γinst                | Montagesicherheitsbeiwert:                                 | [-]      |          |         |       | 1     | ,0                |       |       |       |  |  |
|                      | 1) Del Calabara and anno a Canadan                         | D 1      |          |         |       |       |                   |       |       |       |  |  |

<sup>1)</sup> Bei Fehlen anderer nationaler Regelungen

| Betonschraube TXE                                           |               |
|-------------------------------------------------------------|---------------|
| Merkmale                                                    | Anhang<br>C11 |
| Wesentliche Merkmale für seismische Belastung, Kategorie C1 |               |

# Tabelle C11: Wesentliche Merkmale für seismische Belastung, Kategorie C2, Betonschraube

|                         | he Merkmale für seismisch                                  |      |        |                     |       | Merkma | ile               |        |        |  |  |
|-------------------------|------------------------------------------------------------|------|--------|---------------------|-------|--------|-------------------|--------|--------|--|--|
| Belastung<br>  THE      | g, Kategorie C2, Betonschra                                | ube  | 6      | 8                   | В     | 10     | 12                | 14     | 18     |  |  |
| h <sub>nom</sub>        | Nenn-Einbautiefe:                                          | [mm] |        | 50                  | 65    | 85     | 105               | 115    | 140    |  |  |
| Stahlvers               | agen für Zug- und Querlast                                 |      |        |                     |       |        |                   |        |        |  |  |
| N <sub>Rk,s,C2</sub>    | Charakteristische<br>Tragfähigkeit:                        | [kN] | -      | 39,14               | 39,14 | 54,81  | 74,48             | 105,45 | 161,56 |  |  |
| γMs                     | Teilsicherheitsbeiwert 1):                                 | [-]  |        |                     |       | 1,4    |                   |        |        |  |  |
| V <sub>Rk,s,C2</sub>    | Charakteristische<br>Tragfähigkeit:                        | [kN] |        | 8,4                 | 11,7  | 19,2   | 23,5              | 31,7   | 44,1   |  |  |
| γMs                     | Teilsicherheitsbeiwert 1):                                 | [-]  |        |                     |       | 1,5    |                   |        |        |  |  |
| $lpha_{	ext{gap}}$      | Faktor für Ringspalt:                                      | [-]  |        |                     |       | 0,5    |                   |        |        |  |  |
| Versagen                | Versagen durch Herausziehen                                |      |        |                     |       |        |                   |        |        |  |  |
| N <sub>Rk,p,C2</sub>    | Charakteristische<br>Tragfähigkeit in gerissenem<br>Beton: | [kN] | -      | 2,3                 | 3,4   | 6,9    | 10,5              | 15,3   | 31,5   |  |  |
| γinst                   | Widerstandsfähigkeit:                                      | [-]  | -      | 1,2                 | 1,0   | 1,0    | 1,0               | 1,0    | 1,0    |  |  |
| Versagen                | durch Betonausbruch                                        |      |        |                     |       |        |                   |        |        |  |  |
| h <sub>ef</sub>         | effektive Verankerungstiefe:                               | [mm] |        | 37,5                | 50,5  | 67,0   | 83,5              | 92,0   | 112,0  |  |  |
| Scr,N                   | Achsabstand:                                               | [mm] |        | 3 x h <sub>ef</sub> |       |        |                   |        |        |  |  |
| Ccr,N                   | Randabstand:                                               | [mm] |        |                     |       |        | x h <sub>ef</sub> |        |        |  |  |
| γinst                   | Montagesicherheitsbeiwert:                                 | [-]  |        |                     |       |        | 1,0               |        |        |  |  |
|                         | durch Betonausbruch auf                                    |      | abgewa |                     |       | ,      | •                 |        |        |  |  |
| k <sub>8</sub>          | Betonausbruch-Faktor:                                      | [-]  |        | 1,80                | 1,27  | 2,00   | 2,00              | 2,00   | 2,00   |  |  |
| γinst                   | Montagesicherheitsbeiwert:                                 | [-]  |        |                     |       |        | 1,0               |        |        |  |  |
| Versagen                | durch Betonkantenbruch                                     |      |        | 1                   | T     | 1      | <u> </u>          | 1      | T      |  |  |
| lf .                    | Effektive Verankerungstiefe unter Querbeanspruchung:       | [mm] |        | 37,5                | 50,5  | 67,0   | 83,5              | 92,0   | 112,0  |  |  |
| $d_{nom}$               | Außendurchmesser der<br>Verankerung:                       | [mm] |        | 8                   | 8     | 10     | 12                | 14     | 18     |  |  |
| γinst                   | Montagesicherheitsbeiwert:                                 | [-]  |        |                     |       | ,      | 1,0               |        |        |  |  |
| Verschieb               | oung                                                       |      |        |                     |       |        |                   |        |        |  |  |
| δ <sub>N,C2</sub> (DLS) | Verschiebung:                                              | [mm] |        | 0,36                | 0,16  | 0,22   | 0,41              | 0,25   | 0,66   |  |  |
| δv c2 (DLS)             | Grenzzustand Schaden:2)                                    | [mm] |        | 1,60                | 0,79  | 1,13   | 1,69              | 1,52   | 1,69   |  |  |
| δ <sub>N,C2</sub> (ULS) | Verschiebung:                                              | [mm] |        | 1,08                | 2,70  | 3,11   | 2,61              | 2,32   | 1,89   |  |  |
| δ <sub>V,C2</sub> (ULS) | Grenzzustand<br>Tragfähigkeit: <sup>2)</sup>               | [mm] |        | 2,54                | 4,74  | 7,43   | 9,03              | 6,29   | 8,79   |  |  |
| DLS<br>ULS              | Grenzzustand Schaden: siehe Grenzzustand Tragfähigkeit: s  |      |        |                     |       |        |                   |        |        |  |  |

| Betonschraube THE                                           |               |
|-------------------------------------------------------------|---------------|
| Merkmale                                                    | Anhang<br>C12 |
| Wesentliche Merkmale für seismische Belastung, Kategorie C2 |               |

<sup>1)</sup> Bei Fehlen anderer nationaler Regelungen
2) Bei den angegebenen Verschiebungswerten handelt es sich um Durchschnittswerte.

# <u>Tabelle C12: Wesentliche Merkmale unter Brandeinwirkung, Kopfausführungen aus Kohlenstoffstahl E, K und J</u>

| Wesentliche Merkmale unter |                                                         |               |        |                                                                                                                                                        | Merkmale             |      |      |                   |      |      |      |  |
|----------------------------|---------------------------------------------------------|---------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------|------|-------------------|------|------|------|--|
|                            | inwirkung, Kopfau<br>hlenstoffstahl E, K                |               | gen    |                                                                                                                                                        | 6                    |      |      | 8                 |      | 10   |      |  |
| h <sub>nom</sub>           | Nenn-Einbautiefe:                                       |               | [mm]   | 35                                                                                                                                                     | 40                   | 55   | 50   | 65                | 55   | 75   | 85   |  |
| Stahlve                    | ersagen                                                 |               |        |                                                                                                                                                        |                      |      |      |                   |      |      |      |  |
|                            |                                                         | R30           | [kN]   | 1,48                                                                                                                                                   |                      |      | 2,   | 62                | 4,21 |      |      |  |
| N <sub>Rk.s.fi</sub>       | Charakteristische                                       | R60           | [kN]   |                                                                                                                                                        | 1,12                 |      |      | 97                |      | 3,16 |      |  |
| INKK,S,fi                  | Zugtragfähigkeit:                                       | R90           | [kN]   |                                                                                                                                                        | 0,76                 |      |      | 33                |      | 2,10 |      |  |
|                            |                                                         | R120          | [kN]   |                                                                                                                                                        | 0,58                 |      |      | 00                |      | 1,58 |      |  |
|                            |                                                         | R30           | [kN]   |                                                                                                                                                        | 1,48                 |      |      | 62                |      | 4,21 |      |  |
| $V_{Rk,s,fi}$              | Charakteristische                                       | R60           | [kN]   |                                                                                                                                                        | 1,12                 |      |      | 97                |      | 3,16 |      |  |
| V RK,S,fI                  | Quertragfähigkeit:                                      | R90           | [kN]   |                                                                                                                                                        | 0,76                 |      |      | 33                |      | 2,10 |      |  |
|                            |                                                         | R120          | [kN]   |                                                                                                                                                        | 0,58                 |      | 1,   | 00                |      | 1,58 |      |  |
|                            | Charaktariatiaaha                                       | R30           | [Nm]   |                                                                                                                                                        | 1,27                 |      | 2,   | 94                |      | 5,90 |      |  |
| $M^0$ Rk,s,fi              | Charakteristische<br>Tragfähigkeit für<br>Biegemomente: | R60           | [Nm]   |                                                                                                                                                        | 0,97                 |      | 2,22 |                   |      | 4,42 |      |  |
| IVI*Rk,s,ti                |                                                         | R90           | [Nm]   | 0,66                                                                                                                                                   |                      |      | 1,49 |                   | 2,94 |      |      |  |
|                            | biegemomente.                                           | R120          | [Nm]   |                                                                                                                                                        | 0,50                 |      | 1,   | 13                |      | 2,21 |      |  |
| Versag                     | en durch Herauszi                                       | ehen          |        |                                                                                                                                                        |                      |      |      |                   |      |      |      |  |
| N <sub>Rk,c,fi</sub>       | Charakteristische<br>Tragfähigkeit:                     | R30 -<br>R90  | [kN]   | 1,14                                                                                                                                                   | 1,41                 | 2,43 | 1,98 | 3,09              | 2,30 | 3,85 | 4,72 |  |
| ,•,                        |                                                         | R120          | [kN]   | 0,91                                                                                                                                                   | 1,13                 | 1,94 | 1,58 | 2,47              | 1,84 | 3,08 | 3,78 |  |
| Versag                     | en durch Betonaus                                       | sbruch 1      | )      |                                                                                                                                                        |                      |      |      |                   |      |      |      |  |
| N <sub>Rk,c,fi</sub>       | Charakteristische                                       | R30 -<br>R90  | [kN]   | 0,59                                                                                                                                                   | 0,85                 | 2,09 | 1,48 | 3,12              | 1,91 | 4,51 | 6,33 |  |
| , . , . ,                  | Tragfähigkeit:                                          | R120          | [kN]   | 0,47                                                                                                                                                   | 0,68                 | 1,67 | 1,19 | 2,50              | 1,53 | 3,61 | 5,06 |  |
| Scr.N,fi                   | Kritischer<br>Achsabstand:                              | R30 -<br>R120 | [mm]   |                                                                                                                                                        |                      |      | 4 x  | h <sub>ef</sub>   |      |      |      |  |
| Smin,fi                    | Min. Achsabstand:                                       | R30 -<br>R120 | [mm]   |                                                                                                                                                        | 35                   |      | 3    | 5                 |      | 50   |      |  |
| Ccr.N,fi                   | Kritischer<br>Randabstand:                              | R30 -<br>R120 | [mm]   |                                                                                                                                                        |                      |      | 2 x  | ( h <sub>ef</sub> |      |      |      |  |
| C <sub>min,fi</sub>        | Min.<br>Randabstand:                                    | R30 -<br>R120 | [mm]   | c <sub>min</sub> = 2 x h <sub>ef</sub> ; bei einseitiger Brandbeanspruchung muss der<br>Abstand zwischen Verankerung und Rand wie folgt sein: ≥ 300 mm |                      |      |      |                   |      |      |      |  |
| Versag                     | en durch Betonaus                                       | sbruch a      | uf der | lastabg                                                                                                                                                | astabgewandten Seite |      |      |                   |      |      |      |  |
| k <sub>8</sub>             | Betonausbruch-<br>Faktor:                               | R30-<br>R120  | [mm]   | 2,05                                                                                                                                                   | 1,44                 | 1,15 | 1,80 | 1,27              | 1,95 | 1,32 | 2,00 |  |

<sup>&</sup>lt;sup>1)</sup> In der Regel kann ein Versagen durch Ausbruch ausgeschlossen werden, wenn es sich um gerissenen Beton handelt und eine Bewehrung vorhanden ist.

| Betonschraube THE                          |               |
|--------------------------------------------|---------------|
| Merkmale                                   | Anhang<br>C13 |
| Wesentliche Merkmale unter Brandeinwirkung |               |

# <u>Tabelle C13: Wesentliche Merkmale unter Brandeinwirkung, Kopfausführungen aus Kohlenstoffstahl E, K und J (Forts.)</u>

|                      | tliche Merkmale un                                      |               |           | Merkmale                                                                                                                                               |                |       |       |                 |       |       |       |  |
|----------------------|---------------------------------------------------------|---------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------|-------|-----------------|-------|-------|-------|--|
|                      | einwirkung, Kopfau<br>hlenstoffstahl E, K               |               | gen       | 1                                                                                                                                                      | 2              | 14    |       | 16              |       | 18    |       |  |
| h <sub>nom</sub>     | Nenn-Einbautiefe:                                       |               | [mm]      | 75                                                                                                                                                     | 105            | 75    | 115   | 80              | 120   | 90    | 140   |  |
| Stahlve              | ersagen                                                 |               |           | •                                                                                                                                                      | •              |       |       | •               |       |       | •     |  |
|                      |                                                         | R30           | [kN]      | 7,0                                                                                                                                                    | 31             | 9.    | 10    | 12              | 2,04  | 14    | ,88,  |  |
| N.I.                 | Charakteristische                                       | R60           | [kN]      | 5,24                                                                                                                                                   |                | 6     | 80    | 8               | ,99   | 11    | ,11   |  |
| $N_{Rk,s,fi}$        | Zugtragfähigkeit:                                       | R90           | [kN]      | 3,4                                                                                                                                                    | 16             | 4.    | 49    | 5               | ,93   | 7,    | 33    |  |
|                      |                                                         | R120          | [kN]      | 2,                                                                                                                                                     | 57             | 3     | 33    | 4               | ,41   | 5,    | 45    |  |
|                      |                                                         | R30           | [kN]      | 7,0                                                                                                                                                    | 31             | 9     | 10    | 12              | 2,04  | 14    | ,88   |  |
|                      | Charakteristische                                       | R60           | [kN]      | 5,2                                                                                                                                                    | 24             | 6     | 80    | 8               | ,99   | 11    | ,11   |  |
| $V_{Rk,s,fi}$        | Quertragfähigkeit:                                      | R90           | [kN]      | 3,4                                                                                                                                                    | <del>1</del> 6 | 4     | 49    | 5               | ,93   | 7,    | 33    |  |
|                      |                                                         | R120          | [kN]      | 2,                                                                                                                                                     | 57             |       | 33    | 4               | ,41   | 5,    | 45    |  |
|                      | Ob let                                                  | R30           | [Nm]      | 11,                                                                                                                                                    | 96             | 18    | 3,12  | 27              | 7,56  | 38    | ,52   |  |
| N 40                 | Charakteristische<br>Tragfähigkeit für<br>Biegemomente: | R60           | [Nm]      | 8,93                                                                                                                                                   |                | 13,53 |       | 20              | 0,57  | 28    | ,75   |  |
| $M^0$ Rk,s,fi        |                                                         | R90           | [Nm]      | 5,90                                                                                                                                                   |                | 8,93  |       | 13,59           |       | 18,99 |       |  |
|                      | R120 [Nm]                                               |               | [Nm]      | 4,38                                                                                                                                                   |                | 6,63  |       | 10              | 10,09 |       | 14,10 |  |
| Versag               | en durch Herauszi                                       | ehen          |           |                                                                                                                                                        |                |       |       |                 |       |       |       |  |
| $N_{Rk,p,fi}$        | Charakteristische<br>Tragfähigkeit:                     | R30-<br>R90   | [kN]      | 3,80                                                                                                                                                   | 6,57           | 3,80  | 7,60  | 3,80            | 7,60  | 4,99  | 10,20 |  |
| · •(x,p,ii           |                                                         | R120          | [kN]      | 3,04                                                                                                                                                   | 5,25           | 3,04  | 6,08  | 3,04            | 6,08  | 3,99  | 8,16  |  |
| Versag               | en durch Betonaus                                       | sbruch 1)     | )         |                                                                                                                                                        |                |       |       |                 |       |       |       |  |
| N <sub>Rk,c,fi</sub> | Charakteristische                                       | R30 -<br>R90  | [kN]      | 4,41                                                                                                                                                   | 10,97          | 4,41  | 13,98 | 4,41            | 13,98 | 6,93  | 22,86 |  |
| , .,                 | Tragfähigkeit:                                          | R120          | [kN]      | 3,53                                                                                                                                                   | 8,78           | 3,53  | 11,18 | 3,53            | 11,18 | 5,55  | 18,29 |  |
| Scr.N,fi             | Kritischer<br>Achsabstand:                              | R30 -<br>R120 | [mm]      |                                                                                                                                                        |                |       | 4 x   | h <sub>ef</sub> |       |       |       |  |
| Smin,fi              | Min. Achsabstand:                                       | R30 -<br>R120 | [mm]      | 7                                                                                                                                                      | 5              | 8     | 30    | ;               | 80    | 9     | 90    |  |
| C <sub>cr.N,fi</sub> | Kritischer<br>Randabstand:                              | R30 -<br>R120 | [mm]      |                                                                                                                                                        |                |       | 2 x   | 0.              |       |       |       |  |
| Cmin,fi              | Min. Randabstand:                                       | R30 -<br>R120 | [mm]      | c <sub>min</sub> = 2 x h <sub>ef</sub> ; bei einseitiger Brandbeanspruchung muss der Abstand<br>zwischen Verankerung und Rand wie folgt sein: ≥ 300 mm |                |       |       |                 |       |       |       |  |
| Versag               | en durch Betonaus                                       | sbruch a      | uf der la | astabgev                                                                                                                                               | vandten        | Seite |       |                 |       |       |       |  |
| k <sub>8</sub>       | Betonausbruch-<br>Faktor:                               | R30 -<br>R120 | [mm]      | 2,33                                                                                                                                                   | 2,00           | 2,55  | 2,00  | 2,14            | 2,00  | 2,66  | 2,00  |  |

<sup>&</sup>lt;sup>1)</sup> In der Regel kann ein Versagen durch Ausbruch ausgeschlossen werden, wenn es sich um gerissenen Beton handelt und eine Bewehrung vorhanden ist.

| Betonschraube THE                          |               |
|--------------------------------------------|---------------|
| Merkmale                                   | Anhang<br>C14 |
| Wesentliche Merkmale unter Brandeinwirkung |               |

Bei Fehlen anderer nationaler Regelungen empfiehlt sich der Teilsicherheitsbeiwert für Lasten unter Brandbeanspruchung  $\gamma_{m,fi}$  = 1,0

# <u>Tabelle C14: Wesentliche Merkmale unter Brandeinwirkung, Kopfausführungen aus Kohlenstoffstahl N, A, P, W und S</u>

|                                                                                  | ntliche Merkma                                          | le unte       | r         | Merkmale            |           |           |      |                   |                        |          |          |
|----------------------------------------------------------------------------------|---------------------------------------------------------|---------------|-----------|---------------------|-----------|-----------|------|-------------------|------------------------|----------|----------|
| Brandeinwirkung,<br>Kopfausführungen aus<br>Kohlenstoffstahl N, A, P, W und<br>S |                                                         |               |           | 6                   |           |           | 8    |                   |                        | 10       |          |
| h <sub>nom</sub>                                                                 | Nenn-Einbautiefe:                                       |               | [mm]      | 35                  | 40        | 55        | 50   | 65                | 55                     | 75       | 85       |
|                                                                                  | ersagen                                                 |               | [iiiiii]  |                     | 70        | - 55      | ] 30 | 00                | 55                     |          | - 00     |
| Otallive                                                                         | Jiougon                                                 | R30           | [kN]      |                     | 0,26      |           | 0    | 45                |                        | 1,07     |          |
|                                                                                  | Charakteristische                                       | R60           | [kN]      |                     | 0,23      |           |      | 41                |                        | 0,93     |          |
| $N_{Rk,s,fi}$                                                                    | Zugtragfähigkeit:                                       | R90           | [kN]      |                     | 0,18      |           |      | 32                |                        | 0,71     |          |
|                                                                                  |                                                         | R120          | [kN]      | 0,13                |           |           |      | 23                |                        | 0,57     |          |
|                                                                                  |                                                         | R30           | [kN]      |                     | 0,26      |           |      | 45                |                        | 1,07     |          |
|                                                                                  | Charakteristische                                       | R60           | [kN]      |                     | 0,23      |           |      | 41                |                        | 0,93     |          |
| $V_{Rk,s,fi}$                                                                    | Quertragfähigkeit:                                      | R90           | [kN]      |                     | 0,18      |           |      | 32                |                        | 0,71     |          |
|                                                                                  | 0 0                                                     | R120          | [kN]      |                     | 0,13      |           | 0,   | 23                |                        | 0,57     |          |
|                                                                                  | 01 14 141 1                                             | R30           | [Nm]      |                     | 0,22      |           |      | 52                |                        | 1,52     |          |
| N 40                                                                             | Charakteristische<br>Tragfähigkeit für<br>Biegemomente: | R60           | [Nm]      | 0,20                |           | 0,46      |      | 1,32              |                        |          |          |
| $M^0_{Rk,s,fi}$                                                                  |                                                         | R90           | [Nm]      | 0,16                |           |           | 0,36 |                   | 1,02                   |          |          |
|                                                                                  | Biegemomente:                                           | R120          | [Nm]      |                     | 0,11      |           | 0,26 |                   | 0,81                   |          |          |
| Versag                                                                           | en durch Herauszi                                       | ehen          |           |                     |           |           |      |                   |                        |          |          |
| N <sub>Rk,c,fi</sub>                                                             | Charakteristische                                       | R30 -<br>R90  | [kN]      | 1,14                | 1,41      | 2,43      | 1,98 | 3,09              | 2,30                   | 3,85     | 4,72     |
| , • ,                                                                            | Tragfähigkeit:                                          | R120          | [kN]      | 0,91                | 1,13      | 1,94      | 1,58 | 2,47              | 1,84                   | 3,08     | 3,78     |
| Versag                                                                           | en durch Betonau                                        | sbruch 1      | )         | ·                   |           | ·         |      |                   | ·                      |          |          |
| N <sub>Rk,c,fi</sub>                                                             | Charakteristische                                       | R30 -<br>R90  | [kN]      | 0,59                | 0,85      | 2,09      | 1,48 | 3,12              | 1,91                   | 4,51     | 6,33     |
| ••••••                                                                           | Tragfähigkeit:                                          | R120          | [kN]      | 0,47                | 0,68      | 1,67      | 1,19 | 2,50              | 1,53                   | 3,61     | 5,06     |
| Scr.N,fi                                                                         | Kritischer<br>Achsabstand:                              | R30 -<br>R120 | [mm]      |                     | <u> </u>  |           | 4 x  | c h <sub>ef</sub> |                        | <u> </u> | <u> </u> |
| Smin,fi                                                                          | Min. Achsabstand:                                       | R30 -<br>R120 | [mm]      |                     | 35        |           | 3    | 5                 |                        | 50       |          |
| C <sub>cr.N,fi</sub>                                                             | Kritischer<br>Randabstand:                              | R30 -<br>R120 | [mm]      | 2 x h <sub>ef</sub> |           |           |      |                   |                        |          |          |
| C <sub>min,fi</sub>                                                              | Min. Randabstand:                                       | R30 -<br>R120 | [mm]      | ZV                  | vischen \ | /erankeri |      |                   | ıchung m<br>folgt sein |          |          |
| Versag                                                                           | en durch Betonau                                        |               | auf der l | astabge             | ewandte   | n Seite   |      |                   |                        |          |          |
| k <sub>8</sub>                                                                   | Betonausbruch-<br>Faktor:                               | R30-<br>R120  | [mm]      | 2,05                | 1,44      | 1,15      | 1,80 | 1,27              | 1,95                   | 1,32     | 2,00     |

<sup>&</sup>lt;sup>1)</sup> In der Regel kann ein Versagen durch Ausbruch ausgeschlossen werden, wenn es sich um gerissenen Beton handelt und eine Bewehrung vorhanden ist.

| Betonschraube THE                          |               |
|--------------------------------------------|---------------|
| Merkmale                                   | Anhang<br>C15 |
| Wesentliche Merkmale unter Brandeinwirkung |               |

# <u>Tabelle C15: Wesentliche Merkmale unter Brandeinwirkung, Kopfausführungen aus Kohlenstoffstahl N, A, P, W und S (Forts.)</u>

|                      | ntliche Merkma                                                                   | le unte             | r         |          | Merkmale                                      |          |       |                 |                          |      |       |  |  |
|----------------------|----------------------------------------------------------------------------------|---------------------|-----------|----------|-----------------------------------------------|----------|-------|-----------------|--------------------------|------|-------|--|--|
| Kopfa                | Brandeinwirkung,<br>Kopfausführungen aus<br>Kohlenstoffstahl N, A, P, W und<br>S |                     |           |          | 12                                            |          | 14    |                 | 16                       |      | 18    |  |  |
| h <sub>nom</sub>     | Nenn-Einbautiefe:                                                                |                     | [mm]      | 75       | 105                                           | 75       | 115   | 80              | 120                      | 90   | 140   |  |  |
| Stahlve              | ersagen                                                                          |                     |           |          |                                               |          |       |                 |                          |      |       |  |  |
|                      |                                                                                  | R30                 | [kN]      | 2,0      | )1                                            | 2,       | 99    | 3               | ,53                      |      | 74    |  |  |
| N <sub>Rk.s.fi</sub> | Charakteristische                                                                | R60                 | [kN]      | 1,5      | 51                                            | 2,       | 24    | 2               | ,65                      |      | 56    |  |  |
| INRK,S,fI            | Zugtragfähigkeit:                                                                | R90                 | [kN]      | 1,31     |                                               |          | 94    |                 | ,29                      |      | 08    |  |  |
|                      |                                                                                  | R120                | [kN]      | 1,0      |                                               |          | 50    |                 | ,76                      | 2,   | 37    |  |  |
|                      |                                                                                  | R30                 | [kN]      | 2,0      |                                               |          | 99    |                 | ,53                      |      | 74    |  |  |
| $V_{Rk,s,fi}$        | Charakteristische                                                                | R60                 | [kN]      | 1,5      |                                               |          | 24    |                 | ,65                      |      | 56    |  |  |
| V KK,S,II            | Quertragfähigkeit:                                                               | R90                 | [kN]      | 1,3      |                                               |          | 94    |                 | ,29                      |      | 08    |  |  |
|                      |                                                                                  | R120                | [kN]      | 1,0      |                                               |          | 50    |                 | ,76                      |      | 37    |  |  |
|                      | Charakteristische                                                                | R30                 | [Nm]      | 3,4      |                                               |          | 19    |                 | ,94                      |      | ,37   |  |  |
| $M^0_{Rk,s,fi}$      | Tragfähigkeit für                                                                | R60                 | [Nm]      | 2,5      |                                               |          | 64    |                 | ,95                      |      | 28    |  |  |
| (1,5,11              | Biegemomente:                                                                    | R90                 | [Nm]      | 2,2      |                                               |          | 02    | 5,16            |                          | 8,04 |       |  |  |
|                      |                                                                                  | R120                | [Nm]      | 1,7      | <u>′1                                    </u> | ] 3,     | 10    | 3,97            |                          | 6,18 |       |  |  |
| Versag               | en durch Herauszi                                                                |                     |           |          | ı                                             | 1        | I     | Ī               | I                        | 1    |       |  |  |
| $N_{Rk,p,fi}$        | Charakteristische                                                                | R30-<br>R90         | [kN]      | 3,80     | 6,57                                          | 3,80     | 7,60  | 3,80            | 7,60                     | 4,99 | 10,20 |  |  |
|                      | Tragfähigkeit:                                                                   | R120                | [kN]      | 3,04     | 5,25                                          | 3,04     | 6,08  | 3,04            | 6,08                     | 3,99 | 8,16  |  |  |
| Versag               | en durch Betonaus                                                                | sbruch <sup>1</sup> | )         |          |                                               |          |       |                 |                          |      |       |  |  |
| N <sub>Rk.c.fi</sub> | Charakteristische                                                                | R30 -<br>R90        | [kN]      | 4,41     | 10,97                                         | 4,41     | 13,98 | 4,41            | 13,98                    | 6,93 | 22,86 |  |  |
| , , ,                | Tragfähigkeit:                                                                   | R120                | [kN]      | 3,53     | 8,78                                          | 3,53     | 11,18 | 3,53            | 11,18                    | 5,55 | 18,29 |  |  |
| Scr.N,fi             | Kritischer<br>Achsabstand:                                                       | R30 -<br>R120       | [mm]      |          |                                               |          | 4 x   | h <sub>ef</sub> |                          |      |       |  |  |
| S <sub>min,fi</sub>  | Min. Achsabstand:                                                                | R30 -<br>R120       | [mm]      | 7:       | 5                                             | 8        | 30    |                 | 80                       | 9    | 90    |  |  |
| Ccr.N,fi             | Kritischer<br>Randabstand:                                                       | R30 -<br>R120       | [mm]      |          |                                               |          | 2 x   |                 |                          |      |       |  |  |
| C <sub>min,fi</sub>  | Min. Randabstand:                                                                | R30 -<br>R120       | [mm]      | ZW       | ischen V                                      | erankeru |       |                 | ıchung mu<br>folgt sein: |      |       |  |  |
| Versag               | en durch Betonaus                                                                | sbruch a            | uf der la | astabgev | andten                                        | Seite    |       |                 |                          |      |       |  |  |
| k <sub>8</sub>       | Betonausbruch-<br>Faktor:                                                        | R30 -<br>R120       | [mm]      | 2,33     | 2,00                                          | 2,55     | 2,00  | 2,14            | 2,00                     | 2,66 | 2,00  |  |  |

<sup>&</sup>lt;sup>1)</sup> In der Regel kann ein Versagen durch Ausbruch ausgeschlossen werden, wenn es sich um gerissenen Beton handelt und eine Bewehrung vorhanden ist.

| Betonschraube THE                          |               |
|--------------------------------------------|---------------|
| Merkmale                                   | Anhang<br>C16 |
| Wesentliche Merkmale unter Brandeinwirkung |               |

Bei Fehlen anderer nationaler Regelungen empfiehlt sich der Teilsicherheitsbeiwert für Lasten unter Brandbeanspruchung  $\gamma_{m,fi}$  = 1,0

# Tabelle C16: Wesentliche Merkmale unter Brandeinwirkung, Kopfausführung aus Kohlenstoffstahl T

| Randeinwirkung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     | ntliche Merkma                 | le unte  | Merkmale                                                        |            |                     |      |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------|----------|-----------------------------------------------------------------|------------|---------------------|------|--|--|--|
| Stahlversagen           NR.k.s.fi         Charakteristische Zugtragfähigkeit:         R60 (kN) (kN) (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14 (1,14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Kopfa               | usführung aus<br>nstoffstahl T |          |                                                                 |            | 6                   |      |  |  |  |
| NRk,s,fi         Charakteristische Zugtragfähigkeit:         R30 [kN]         1,62 (kN)         1,14 (kN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | h <sub>nom</sub>    | Nenn-Einbautiefe:              |          | [mm]                                                            | 35         | 40                  | 55   |  |  |  |
| NRk,s,fi         Charakteristische Zugtragfähigkeit:         R30 [kN]         1,62 (kN)         1,14 (kN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Stahlve             | ersagen                        |          |                                                                 |            |                     |      |  |  |  |
| NRk,s,fi         Zugtragfähigkeit:         R90 [kN]         0,67 (kN]           VRk,s,fi         Charakteristische Quertragfähigkeit:         R30 [kN]         1,62 (kN]           M°Rk,s,fi         Charakteristische Quertragfähigkeit:         R60 [kN]         0,43 (kN]           M°Rk,s,fi         Charakteristische Tragfähigkeit für Biegemomente:         R30 [Nm]         1,40 (kN]           NRk,s,fi         Charakteristische Tragfähigkeit:         R30 [Nm]         0,99 (kN]           NRk,c,fi         Charakteristische Tragfähigkeit:         R90 [kN]         0,58 (kN]           NRk,c,fi         Charakteristische Tragfähigkeit:         R30 [kN]         1,14 (kN]           NRk,c,fi         Charakteristische Tragfähigkeit:         R30 [kN]         1,14 (kN]         1,41 (kN]           NRk,c,fi         Charakteristische Tragfähigkeit:         R30 (kN)         1,14 (kN)         1,41 (kN)         1,43 (kN)           NRk,c,fi         Charakteristische Tragfähigkeit:         R30 (kN)         0,91 (kN)         1,13 (kN)         1,94 (kN)           Versagen durch Betonausbruch R30 (kN)         0,59 (kN)         0,68 (kN)         1,67 (kN)           Kritischer R30 (kN)         R30 (kN)         0,47 (kN)         0,68 (kN)         1,67 (kN)           Serin,fi         Kritischer Rand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |                                | R30      | [kN]                                                            |            | 1,62                |      |  |  |  |
| V <sub>Rk,s,fi</sub> Zuguragianigkeit.         R120 [kN]         0,67 (kN]           V <sub>Rk,s,fi</sub> Charakteristische Quertragfähigkeit:         R30 [kN]         1,62 (kN]           M <sup>0</sup> <sub>Rk,s,fi</sub> Charakteristische Tragfähigkeit für Biegemomente:         R120 [kN]         0,67 (kN]           M <sup>0</sup> <sub>Rk,s,fi</sub> Charakteristische Tragfähigkeit für Biegemomente:         R30 [Nm]         0,99 (Nm]           N <sub>Rk,c,fi</sub> Charakteristische Tragfähigkeit:         R30 [kN]         1,140 (Nm]           N <sub>Rk,c,fi</sub> Charakteristische Tragfähigkeit:         R30 (kN]         1,14 (Nm]           N <sub>Rk,c,fi</sub> Charakteristische Tragfähigkeit:         R30 (kN)         1,14 (Nm)         1,41 (Nm)           N <sub>Rk,c,fi</sub> Charakteristische Tragfähigkeit:         R30 (kN)         0,91 (kN)         1,14 (Nm)         1,94           Versagen durch Betonausbruch 1           S <sub>cr,N,fi</sub> Kritischer R30 (kN)         R30 (kN)         0,59 (kN)         0,85 (kN)         2,09 (kN)           S <sub>cr,N,fi</sub> Min. Achsabstand:         R120 (kN)         0,47 (kN)         0,68 (kN)         1,67 (kN)           S <sub>cr,N,fi</sub> Min. Achsabstand:         R30 (kN)         0,47 (kN)         0,68 (kN)         1,67 (kN)           C <sub>cr,N,fi</sub> Min. Randabst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NI                  | Charakteristische              | R60      | [kN]                                                            |            | 1,14                |      |  |  |  |
| V <sub>Rk,s,fi</sub> Charakteristische Quertragfähigkeit:         R80 (kN)         1,14 (kN)         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | INRk,s,fi           | Zugtragfähigkeit:              | R90      | [kN]                                                            |            | 0,67                |      |  |  |  |
| VRk.s.fi         Charakteristische Quertragfähigkeit:         R60 [kN]         1,14 (N)         0,67 (N)         0,67 (N)         0,67 (N)         0,43 (N)         0,99 (N)         0,99 (N)         0,99 (N)         0,99 (N)         0,99 (N)         0,99 (N)         0,58 (N)         0,37 (N)         0,99 (N)         0,37 (N)         0,91 (N)         0,37 (N)         0,91 (N)         0,37 (N)         0,91 (N)         0,93 (N)         0,91 (N)         0,93 (N)         0,91 (N)         0,91 (N)         0,93 (N)         0,91 (N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |                                | R120     | [kN]                                                            |            | 0,43                |      |  |  |  |
| VRk.s.fi         Quertragfähigkeit:         R90 [kN] 0,67           R120 [kN] 0,43           Mo <sub>Rk.s.fi</sub> Charakteristische Tragfähigkeit für Biegemomente:         R30 [Nm] 0,99           Versagen durch Herausziehen           N <sub>Rk.c.fi</sub> Charakteristische Tragfähigkeit:         R30 - R90 [kN] R120 [kN]         1,14 1,41 2,43         2,43           Versagen durch Betonausbruch 10           Versagen durch Betonausbruch 10           NRk.c.fi         Charakteristische Tragfähigkeit:         R30 - R90 [kN] R90 [kN]         0,59 0,85 2,09         2,09           R120 [kN] 0,47 0,68 1,67           Scr.N.fi         Kritischer R30 - Achsabstand:         R30 - R120 R120 [mm]         35           Cor.N.fi         Kritischer Randabstand:         R30 - R120 R120 [mm]         2 x hef           Cmin, fi         Min. Randabstand:         R30 - R120 [mm]         Cmin = 2 x her; bei einseitiger Brandbeanspruchung muss der Abstand zwischen Verankerung und Rand wie folgt sein: ≥ 300 mm           Versagen durch Betonausbruch auf der lastabgewandten Seite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |                                | R30      | [kN]                                                            |            | 1,62                |      |  |  |  |
| R90   KN   0,43   1,40   R60   KN   0,99   R120   KN   0,97   R120   KN   0,99   R120   KN   0,97   R120   KN   0,97   R120   KN   0,91   0,37   R120   KN   0,91   1,14   1,41   2,43   R120   KN   0,91   1,13   1,94   R120   KN   0,91   1,13   1,94   R120   KN   0,91   1,13   1,94   R120   KN   0,59   0,85   2,09   R120   KN   0,47   0,68   1,67   R120   KN   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47   0,47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \/                  | Charakteristische              | R60      | [kN]                                                            |            | 1,14                |      |  |  |  |
| Charakteristische Tragfähigkeit für Biegemomente:       R30 [Nm]       1,40 (Nm]       0,99 (Nm]       0,99 (Nm]       0,58 (Nm]       0,58 (Nm]       0,58 (Nm]       0,58 (Nm]       0,58 (Nm]       0,37 (Nm]       0,37 (Nm]       0,58 (Nm]       0,37 (Nm]       0,37 (Nm]       0,58 (Nm]       0,37 (Nm] <td>V Rk,s,fi</td> <td>Quertragfähigkeit:</td> <td>R90</td> <td>[kN]</td> <td></td> <td>0,67</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V Rk,s,fi           | Quertragfähigkeit:             | R90      | [kN]                                                            |            | 0,67                |      |  |  |  |
| $ \begin{array}{c} \text{Charakteristische} \\ \text{Tragfähigkeit für} \\ \text{Biegemomente:} \end{array} \begin{array}{c} \text{R60}  [\text{Nm}] \\ \text{R90}  [\text{Nm}] \\ \text{R120}  [\text{Nm}] \end{array} \begin{array}{c} 0,58 \\ 0,37 \end{array} \\ \hline \\ \text{Versagen durch Herausziehen} \end{array} \\ \begin{array}{c} \text{N}_{RK,c,fi} \end{array} \begin{array}{c} \text{Charakteristische} \\ \text{Tragfähigkeit:} \end{array} \begin{array}{c} \text{R30 -} \\ \text{R90} \end{array} \begin{array}{c} [\text{kN}] \end{array} \begin{array}{c} 1,14 \\ 0,91 \end{array} \begin{array}{c} 1,41 \end{array} \begin{array}{c} 2,43 \\ 2,43 \end{array} \\ \hline \\ \text{R120}  [\text{kN}] \end{array} \begin{array}{c} 0,91 \end{array} \begin{array}{c} 1,13 \end{array} \begin{array}{c} 1,94 \end{array} \\ \hline \\ \text{Versagen durch Betonausbruch} \end{array} \\ \begin{array}{c} \text{N}_{RL,c,fi} \end{array} \begin{array}{c} \text{Charakteristische} \\ \text{Tragfähigkeit:} \end{array} \begin{array}{c} \text{R30 -} \\ \text{R90} \end{array} \begin{array}{c} [\text{kN}] \end{array} \begin{array}{c} 0,59 \\ 0,59 \end{array} \begin{array}{c} 0,85 \\ 2,09 \end{array} \\ \hline \\ \text{R120} \begin{array}{c} [\text{kN}] \end{array} \begin{array}{c} 0,59 \\ \text{R120} \end{array} \begin{array}{c} 0,68 \end{array} \begin{array}{c} 1,67 \end{array} \\ \hline \\ \text{Sor.N,fi} \end{array} \begin{array}{c} \text{Kritischer} \\ \text{Achsabstand:} \\ \text{R120} \end{array} \begin{array}{c} [\text{R30 -} \\ \text{R120} \end{array} \begin{array}{c} [\text{mm}] \end{array} \begin{array}{c} 4 \times h_{ef} \end{array} \\ \hline \\ \text{S}_{min,fi} \end{array} \begin{array}{c} \text{Min. Achsabstand:} \\ \text{R120} \end{array} \begin{array}{c} [\text{R30 -} \\ \text{R120} \end{array} \begin{array}{c} [\text{mm}] \end{array} \begin{array}{c} 2 \times h_{ef} \end{array} \\ \hline \\ \text{C}_{min} = 2 \times h_{ef}, \text{bei einseitiger} \\ \text{Brandbeanspruchung muss der} \\ \text{Abstand zwischen Verankerung und} \\ \text{R120} \end{array} \begin{array}{c} \text$ |                     |                                | R120     | [kN]                                                            |            | 0,43                |      |  |  |  |
| M <sup>0</sup> R <sub>R,s,fi</sub> Tragfähigkeit für Biegemomente:         R60 [Nm]         0,99 (Nm]         0,58 (Nm]         0,58 (Nm]         0,37           Versagen durch Herausziehen         R30 - R90 [Nm]         (kN]         1,14 1,41 2,43 1,41 2,43 1,44 1,41 2,43 1,44 1,41 2,43 1,44 1,41 2,43 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     | Chanalstaniaticals             | R30      | [Nm]                                                            |            | 1,40                |      |  |  |  |
| Regenomente:         R90 [Nm] [Nm]         0,38 (Nm]           Versagen durch Herausziehen           NRk,c,fi         Charakteristische Tragfähigkeit:         R30 - R90 [kN]         1,14 1,41 2,43           NRk,c,fi         R120 [kN] 0,91 1,13 1,94           Versagen durch Betonausbruch 10         R30 - R90 [kN] 0,59 0,85 2,09           R120 [kN] 0,47 0,68 1,67           Scr.N,fi         Kritischer Achsabstand:         R30 - R120 [mm]         4 x hef           Smin,fi         Min. Achsabstand:         R30 - R120 [mm]         35           Ccr.N,fi         Kritischer Randabstand:         R30 - R120 [mm]         2 x hef           Cmin,fi         Min. Randabstand:         R30 - R120 [mm]         2 x hef; bei einseitiger Brandbeanspruchung muss der Abstand zwischen Verankerung und Rand wie folgt sein: ≥ 300 mm           Versagen durch Betonausbruch Retruch         R30 - R120 [mm]         R3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N40                 |                                | R60      | [Nm]                                                            |            | 0,99                |      |  |  |  |
| Versagen durch Herausziehen           N <sub>Rk,c,fi</sub> Charakteristische Tragfähigkeit:         R30 - R90   [kN]         1,14   1,41   2,43   1,94           Versagen durch Betonausbruch 1)           N <sub>Rk,c,fi</sub> Charakteristische Tragfähigkeit:         R30 - R90   [kN]   0,59   0,85   2,09   0,85   2,09   0,47   0,68   1,67           Scr.N,fi         Kritischer Achsabstand:         R30 - R120   [mm]   4 x hef           Smin,fi         Min. Achsabstand:         R30 - R120   [mm]   35           Ccr.N,fi         Kritischer R30 - R120   [mm]   2 x hef           Cmin,fi         Min. Randabstand:         R30 - R120   [mm]   2 x hef           Min. Randabstand:         R30 - R120   [mm]   2 x hef           Abstand zwischen Verankerung muss der Abstand zwischen Verankerung und Rand wie folgt sein: ≥ 300 mm           Versagen durch Betonausbruch         Betongushruch         B30 - R30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IVI~Rk,s,fi         |                                | R90      | [Nm]                                                            | 0,58       |                     |      |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     | biegemomente.                  | R120     | [Nm]                                                            |            |                     |      |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Versag              | en durch Herauszi              | iehen    |                                                                 |            |                     |      |  |  |  |
| Tragraniskeit.         R120 [kN] 0,91 1,13 1,94           Versagen durch Betonausbruch 1)           NRk,c,fil         Charakteristische Tragfähigkeit:         R30 - R90 [kN] 0,59 0,85 2,09         2,09           Scr.N,fil         Kritischer Achsabstand:         R30 - R120 [mm] 4 x hef         4 x hef           Smin,fil         Min. Achsabstand:         R30 - R120 [mm] 35         35           Ccr.N,fil         Kritischer Randabstand:         R30 - R120 [mm] 2 x hef         2 x hef           Cmin,fil         Min. Randabstand:         R30 - R120 [mm] R30 - R120 [mm] R30 - R120 [mm]         2 x hef           Versagen durch Betonausbruch auf der lastabgewandten Seite         Rand wie folgt sein: ≥ 300 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     | Charakteristische              | R30 -    | [kN]                                                            | 1,14       | 1,41                | 2,43 |  |  |  |
| NRk,c,fi         Charakteristische Tragfähigkeit:         R30 - R90         [kN]         0,59         0,85         2,09           Scr.N,fi         Kritischer Achsabstand:         R30 - R120         [mm]         4 x hef           Smin,fi         Min. Achsabstand:         R30 - R120         [mm]         35           Ccr.N,fi         Kritischer Randabstand:         R30 - R120         [mm]         2 x hef           Cmin,fi         Min. Randabstand:         R30 - R120         [mm]         2 x hef; bei einseitiger           Brandbeanspruchung muss der Abstand zwischen Verankerung und Rand wie folgt sein: ≥ 300 mm         Rand wie folgt sein: ≥ 300 mm           Versagen durch Betonausbruch auf der lastabgewandten Seite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     | l ragfähigkeit:                | R120     | [kN]                                                            | 0,91       | 1,13                | 1,94 |  |  |  |
| NRk,c,fi         Charakteristische Tragfähigkeit:         R30 - R90         [kN]         0,59         0,85         2,09           Scr.N,fi         Kritischer Achsabstand:         R30 - R120         [mm]         4 x hef           Smin,fi         Min. Achsabstand:         R30 - R120         [mm]         35           Ccr.N,fi         Kritischer Randabstand:         R30 - R120         [mm]         2 x hef           Cmin,fi         Min. Randabstand:         R30 - R120         [mm]         2 x hef; bei einseitiger           Brandbeanspruchung muss der Abstand zwischen Verankerung und Rand wie folgt sein: ≥ 300 mm         Rand wie folgt sein: ≥ 300 mm           Versagen durch Betonausbruch auf der lastabgewandten Seite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Versag              | en durch Betonau               | sbruch 1 | )                                                               |            |                     |      |  |  |  |
| R120 [kN] 0,47 0,68 1,67    Scr.N,fi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     | Charakteristische              | R30 -    |                                                                 | 0,59       | 0,85                | 2,09 |  |  |  |
| Scr.N,fi       Achsabstand:       R120       [mm]       4 x hef         smin,fi       Min. Achsabstand:       R30 - R120       [mm]       35         Ccr.N,fi       Kritischer Randabstand:       R30 - R120       [mm]       2 x hef         Cmin,fi       Min. Randabstand:       R30 - R120       [mm]       Brandbeanspruchung muss der Abstand zwischen Verankerung und Rand wie folgt sein: ≥ 300 mm         Versagen durch Betonausbruch auf der lastabgewandten Seite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,-,                 |                                | R120     | [kN]                                                            | 0,47       | 0,68                | 1,67 |  |  |  |
| Smin,fi     Min. Achsabstand:     R120     [mm]     35       Ccr.N,fi     Kritischer Randabstand:     R30 - R120     [mm]     2 x hef       Cmin,fi     Min. Randabstand:     R30 - R120     [mm]     Cmin = 2 x hef; bei einseitiger Brandbeanspruchung muss der Abstand zwischen Verankerung und Rand wie folgt sein: ≥ 300 mm       Versagen durch Betonausbruch auf der lastabgewandten Seite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Scr.N,fi            |                                | R120     | [mm]                                                            |            | 4 x h <sub>ef</sub> |      |  |  |  |
| Cmin,fi Randabstand: R120 [mm] 2 x hef  Cmin = 2 x hef; bei einseitiger  Brandbeanspruchung muss der  Abstand zwischen Verankerung und Rand wie folgt sein: ≥ 300 mm  Versagen durch Betonausbruch auf der lastabgewandten Seite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S <sub>min,fi</sub> |                                | R120     | [mm]                                                            |            | 35                  |      |  |  |  |
| Min. Randabstand:  R30 - R120  R120  R30 - R120  Rand Brandbeanspruchung muss der Abstand zwischen Verankerung und Rand wie folgt sein: ≥ 300 mm  Versagen durch Betonausbruch auf der lastabgewandten Seite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ccr.N,fi            | NE IMMI                        |          |                                                                 |            | 2 x h <sub>ef</sub> |      |  |  |  |
| Retonaushruch- P30-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,                   |                                | R120     | Brandbeanspruchung muss der<br>Abstand zwischen Verankerung und |            |                     |      |  |  |  |
| Betonausbruch- R30-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Versag              | en durch Betonau               | sbruch a | uf der l                                                        | astabgewar | ndten Seite         | 9    |  |  |  |
| k <sub>8</sub> Faktor: R120 [mm] 2,05 1,44 1,15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     | Betonausbruch-                 | R30-     | [mm]                                                            | 2,05       | 1,44                | 1,15 |  |  |  |

<sup>&</sup>lt;sup>1)</sup> In der Regel kann ein Versagen durch Ausbruch ausgeschlossen werden, wenn es sich um gerissenen Beton handelt und eine Bewehrung vorhanden ist.

| Betonschraube THE                          |                                         |
|--------------------------------------------|-----------------------------------------|
| Merkmale                                   | Anhang<br>C17                           |
| Wesentliche Merkmale unter Brandeinwirkung | • • • • • • • • • • • • • • • • • • • • |

# <u>Tabelle C17: Wesentliche Merkmale unter Brandeinwirkung, Kopfausführung aus Kohlenstoffstahl M</u>

|                      | ntliche Merkmal                                | Merkmale      |        |                                                                                                                                                           |      |                     |      |      |  |
|----------------------|------------------------------------------------|---------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------|------|------|--|
| Kopfa                | leinwirkung,<br>usführung aus<br>nstoffstahl M |               | 6      | 8                                                                                                                                                         | 8    |                     |      |      |  |
| h <sub>nom</sub>     | Nenn-Einbautiefe:                              |               | [mm]   | 35                                                                                                                                                        | 40   | 55                  | 50   | 60   |  |
| Stahlve              | ersagen                                        |               |        |                                                                                                                                                           |      |                     |      |      |  |
|                      |                                                | R30           | [kN]   |                                                                                                                                                           | 0,87 |                     | 0,87 |      |  |
| NI=. "               | Charakteristische                              | R60           | [kN]   |                                                                                                                                                           | 0,72 |                     | 0,   | 72   |  |
| $N_{Rk,s,fi}$        | Zugtragfähigkeit:                              | R90           | [kN]   |                                                                                                                                                           | 0,58 |                     |      | 58   |  |
|                      |                                                | R120          | [kN]   |                                                                                                                                                           | 0,51 |                     | 0,   |      |  |
|                      |                                                | R30           | [kN]   |                                                                                                                                                           | 0,87 |                     | 0,8  | 87   |  |
| $V_{Rk,s,fi}$        | Charakteristische                              | R60           | [kN]   |                                                                                                                                                           | 0,72 |                     | 0,   |      |  |
| V KK,S,II            | Quertragfähigkeit:                             | R90           | [kN]   |                                                                                                                                                           | 0,58 |                     |      | 58   |  |
|                      |                                                | R120          | [kN]   |                                                                                                                                                           | 0,51 |                     | 0,   |      |  |
|                      | Charakteristische                              | R30           | [Nm]   |                                                                                                                                                           | 0,75 |                     | 0,   |      |  |
| $M^0$ Rk,s,fi        | Tragfähigkeit für Biegemomente:                | R60           | [Nm]   |                                                                                                                                                           | 0,62 | 0,62                |      |      |  |
| IVI KK,S,TI          |                                                | R90           | [Nm]   | 0,50                                                                                                                                                      |      |                     | 0,50 |      |  |
|                      |                                                | R120          | [Nm]   |                                                                                                                                                           | 0,44 |                     | 0,44 |      |  |
| Versag               | en durch Herauszie                             | ehen          |        |                                                                                                                                                           |      |                     |      |      |  |
| N <sub>Rk,c,fi</sub> | Charakteristische<br>Tragfähigkeit:            | R30 -<br>R90  | [kN]   | 1,14                                                                                                                                                      | 1,41 | 2,43                | 1,98 | 3,09 |  |
|                      |                                                | R120          | [kN]   | 0,91                                                                                                                                                      | 1,13 | 1,94                | 1,58 | 2,47 |  |
| Versag               | en durch Betonaus                              | bruch 1       | )      |                                                                                                                                                           |      |                     |      |      |  |
| N <sub>Rk,c,fi</sub> | Charakteristische                              | R30 -<br>R90  | [kN]   | 0,59                                                                                                                                                      | 0,85 | 2,09                | 1,48 | 3,12 |  |
| 1 111,0,11           | Tragfähigkeit:                                 | R120          | [kN]   | 0,47                                                                                                                                                      | 0,68 | 1,67                | 1,19 | 2,50 |  |
| Scr.N,fi             | Kritischer<br>Achsabstand:                     | R30 -<br>R120 | [mm]   |                                                                                                                                                           |      | 4 x h <sub>ef</sub> |      |      |  |
| Smin,fi              | Min. Achsabstand:                              | R30 -<br>R120 | [mm]   | 35 35                                                                                                                                                     |      |                     |      |      |  |
| Ccr.N,fi             | Kritischer<br>Randabstand:                     | R30 -<br>R120 | [mm]   | 2 x h <sub>ef</sub>                                                                                                                                       |      |                     |      |      |  |
| Cmin,fi              | Min. Randabstand:                              | R30 -<br>R120 | [mm]   | c <sub>min</sub> = 2 x h <sub>ef</sub> ; bei einseitiger Brandbeanspruchung<br>muss der Abstand zwischen Verankerung und Rand<br>wie folgt sein: ≥ 300 mm |      |                     |      |      |  |
| Versag               | en durch Betonaus                              | bruch a       | uf der | lastabgev                                                                                                                                                 |      |                     |      |      |  |
| k <sub>8</sub>       | Betonausbruch-<br>Faktor:                      | R30-<br>R120  | [mm]   | 2,05                                                                                                                                                      | 1,44 | 1,15                | 1,80 | 1,27 |  |

<sup>&</sup>lt;sup>1)</sup> In der Regel kann ein Versagen durch Ausbruch ausgeschlossen werden, wenn es sich um gerissenen Beton handelt und eine Bewehrung vorhanden ist.

| Betonschraube THE                          |               |
|--------------------------------------------|---------------|
| Merkmale                                   | Anhang<br>C18 |
|                                            | C16           |
| Wesentliche Merkmale unter Brandeinwirkung |               |

# <u>Tabelle C18: Wesentliche Merkmale unter Brandeinwirkung, Kopfausführung aus Kohlenstoffstahl F</u>

|                                                        | ntliche Merkmal            | •             | Merkmale |                                                                                                                                                     |         |                     |      |        |
|--------------------------------------------------------|----------------------------|---------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------|------|--------|
| Brandeinwirkung, Kopfausführung aus Kohlenstoffstahl F |                            |               |          |                                                                                                                                                     | 6       |                     | 8    |        |
|                                                        | Innengewinde               |               | [-]      | M8/M10                                                                                                                                              | M10     | M8/M10              | M10  | ); M12 |
| h <sub>nom</sub>                                       | Nenn-Einbautiefe:          |               | [mm]     | 35                                                                                                                                                  | 40      | 55                  | 50   | 65     |
| Stahlve                                                | ersagen                    |               |          |                                                                                                                                                     |         |                     |      |        |
|                                                        | <u> </u>                   | R30           | [kN]     | 0,26                                                                                                                                                | 1,01    | 0,26                | 1    | ,44    |
| ١                                                      | Charakteristische          | R60           | [kN]     | 0,23                                                                                                                                                | 0,83    | 0,23                |      | ,07    |
| $N_{Rk,s,fi}$                                          | Zugtragfähigkeit:          | R90           | [kN]     | 0,18                                                                                                                                                | 0,65    | 0,18                |      | ,70    |
|                                                        | 0 0 0                      | R120          | [kN]     | 0,13                                                                                                                                                | 0,57    | 0,13                |      | ,51    |
|                                                        |                            | R30           | [kN]     | 0,26                                                                                                                                                | 1,01    | 0,26                |      | ,44    |
| .,                                                     | Charakteristische          | R60           | [kN]     | 0,23                                                                                                                                                | 0,83    | 0,23                | 1    | ,07    |
| $V_{Rk,s,fi}$                                          | Quertragfähigkeit:         | R90           | [kN]     | 0,18                                                                                                                                                | 0,65    | 0,18                |      | ,70    |
|                                                        | 0 0                        | R120          | [kN]     | 0,13                                                                                                                                                | 0,57    | 0,13                |      | ,51    |
|                                                        | 01 14 14 1                 | R30           | [Nm]     | 0,22                                                                                                                                                | 0,87    | 0,22                |      | ,62    |
| N 40                                                   | Charakteristische          | R60           | [Nm]     | 0,20                                                                                                                                                | 0,72    | 0,20                | 1    | ,20    |
| $M^0_{Rk,s,fi}$                                        | Tragfähigkeit für          | R90           | [Nm]     | 0,16                                                                                                                                                | 0,56    | 0,16                |      | ,78    |
|                                                        | Biegemomente:              | R120          | [Nm]     | 0,11                                                                                                                                                | 0,49    | 0,11                | 0    | ,57    |
| Versag                                                 | en durch Herauszie         | ehen          | • •      | <u>, , , , , , , , , , , , , , , , , , , </u>                                                                                                       |         |                     |      | ,      |
| N <sub>Rk,c,fi</sub>                                   | Charakteristische          | R30 -<br>R90  | [kN]     | 1,14                                                                                                                                                | 1,41    | 2,43                | 1,98 | 3,09   |
| , -                                                    | Tragfähigkeit:             | R120          | [kN]     | 0,91                                                                                                                                                | 1,13    | 1,94                | 1,58 | 2,47   |
| Versag                                                 | en durch Betonaus          | sbruch 1)     |          |                                                                                                                                                     |         |                     |      |        |
| N <sub>Rk,c,fi</sub>                                   | Charakteristische          | R30 -<br>R90  | [kN]     | 0,59                                                                                                                                                | 0,85    | 2,09                | 1,48 | 3,12   |
| , ,                                                    | Tragfähigkeit:             | R120          | [kN]     | 0,47                                                                                                                                                | 0,68    | 1,67                | 1,19 | 2,50   |
| S <sub>cr.N,fi</sub>                                   | Kritischer<br>Achsabstand: | R30 -<br>R120 | [mm]     |                                                                                                                                                     |         | 4 x h <sub>ef</sub> |      |        |
| Smin,fi                                                | Min. Achsabstand:          | R30 -<br>R120 | [mm]     |                                                                                                                                                     | 35      |                     |      | 35     |
| C <sub>cr.N,fi</sub>                                   | Kritischer<br>Randabstand: | R30 -<br>R120 | [mm]     |                                                                                                                                                     |         | 2 x h <sub>ef</sub> |      |        |
| Cmin,fi                                                | Min. Randabstand:          | R30 -<br>R120 | [mm]     | c <sub>min</sub> = 2 x h <sub>ef</sub> ; bei einseitiger Brandbeanspruchung muss der Abstand zwischen Verankerung und Rand wie folgt sein: ≥ 300 mm |         |                     |      |        |
| Versag                                                 | en durch Betonaus          |               | uf der l | astabgew                                                                                                                                            | /andter | Seite               |      |        |
| k <sub>8</sub>                                         | Betonausbruch-<br>Faktor:  | R30-<br>R120  | [mm]     | 2,05                                                                                                                                                | 1,44    | 1,15                | 1,80 | 1,27   |
|                                                        |                            |               |          |                                                                                                                                                     | 1       |                     |      |        |

<sup>&</sup>lt;sup>1)</sup> In der Regel kann ein Versagen durch Ausbruch ausgeschlossen werden, wenn es sich um gerissenen Beton handelt und eine Bewehrung vorhanden ist.

| Betonschraube THE                          |               |
|--------------------------------------------|---------------|
| Merkmale                                   | Anhang<br>C19 |
| Wesentliche Merkmale unter Brandeinwirkung |               |

# <u>Tabelle C19: Wesentliche Merkmale unter Brandeinwirkung, Kopfausführungen aus rostfreiem Stahl E, K und J</u>

| Wesentliche Merkmale unter                                        |                             |               |         | Merkmale                                                                                                                                               |       |        |      |        |      |      |      |            |  |
|-------------------------------------------------------------------|-----------------------------|---------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|------|--------|------|------|------|------------|--|
| Brandeinwirkung, Kopfausführungen aus rostfreiem Stahl E, K und J |                             |               |         |                                                                                                                                                        | 6     |        |      | 8      |      | 10   |      | 12         |  |
| h <sub>nom</sub>                                                  | Nenn-Einbautiefe:           |               | [mm]    | 35                                                                                                                                                     | 40    | 55     | 50   | 65     | 55   | 85   | 75   | 105        |  |
| Stahlve                                                           | ersagen                     |               |         |                                                                                                                                                        |       |        |      |        |      |      |      |            |  |
|                                                                   |                             | R30           | [kN]    |                                                                                                                                                        | 1,48  |        | 2    | ,62    | 4,   | 21   | 7,   | 61         |  |
| N <sub>Rk.s.fi</sub>                                              | Charakteristische           | R60           | [kN]    |                                                                                                                                                        | 1,12  |        | 1    | ,97    | 3,   | 16   | 5,   | 24         |  |
| INRK,S,fi                                                         | Zugtragfähigkeit:           | R90           | [kN]    |                                                                                                                                                        | 0,76  |        | 1    | ,33    | 2,   | 10   | 3,   | 46         |  |
|                                                                   |                             | R120          | [kN]    |                                                                                                                                                        | 0,58  |        | 1    | ,00    | 1,   | 58   | 2,   | 57         |  |
|                                                                   |                             | R30           | [kN]    |                                                                                                                                                        | 1,48  |        | 2    | ,62    | 4,   | 21   | 7,   | 61         |  |
| V                                                                 | Charakteristische           | R60           | [kN]    |                                                                                                                                                        | 1,12  |        | 1    | ,97    | 3,   | 16   | 5,   | 24         |  |
| $V_{Rk,s,fi}$                                                     | Quertragfähigkeit:          | R90           | [kN]    |                                                                                                                                                        | 0,76  |        | 1    | ,33    | 2,   | 10   | 3,   | 46         |  |
|                                                                   |                             | R120          | [kN]    |                                                                                                                                                        | 0,58  |        | 1    | ,00    | 1,   | 58   | 2,   | 57         |  |
|                                                                   | Ob a wallet a winetia ale a | R30           | [Nm]    |                                                                                                                                                        | 1,27  |        | 2    | ,94    | 5,   | ,90  | 11   | ,96        |  |
| N 40                                                              | Charakteristische           | R60           | [Nm]    |                                                                                                                                                        | 0,97  |        | 2    | ,22    | 4,   | 42   | 8,93 |            |  |
| $M^0$ Rk,s,fi                                                     | Tragfähigkeit für           | R90           | [Nm]    | 0,66                                                                                                                                                   |       | 1,49   |      | 2,94   |      |      |      |            |  |
|                                                                   | Biegemomente:               | R120          | [Nm]    |                                                                                                                                                        | 0,50  |        | 1,13 |        | 2,21 |      | 4,   | 38         |  |
| Versag                                                            | en durch Herauszi           | ehen          |         |                                                                                                                                                        |       |        |      |        |      |      |      |            |  |
| N <sub>Rk,p,fi</sub>                                              | Charakteristische           | R30-<br>R90   | [kN]    | 0,25                                                                                                                                                   | 0,63  | 1,88   | 1,25 | 3,09   | 2,30 | 4,72 | 3,50 | 6,57       |  |
| 4,                                                                | Tragfähigkeit:              | R120          | [kN]    | 0,20                                                                                                                                                   | 0,50  | 1,50   | 1,00 | 2,47   | 1,84 | 3,78 | 2,80 | 5,25       |  |
| Versag                                                            | en durch Betonaus           | sbruch 1      | )       |                                                                                                                                                        |       | , ·    |      |        |      |      | , ,  |            |  |
| N <sub>Rk,c,fi</sub>                                              | Charakteristische           | R30-<br>R90   | [kN]    | 0,59                                                                                                                                                   | 0,85  | 2,09   | 1,48 | 3,12   | 1,91 | 6,33 | 4,41 | 10,97      |  |
|                                                                   | Tragfähigkeit:              | R120          | [kN]    | 0,47                                                                                                                                                   | 0,68  | 1,67   | 1,19 | 2,50   | 1,53 | 5,06 | 3,53 | 8,78       |  |
| Scr.N,fi                                                          | Kritischer<br>Achsabstand:  | R30 -<br>R120 | [mm]    |                                                                                                                                                        |       |        |      | 4 x h∈ | ef   |      |      |            |  |
| S <sub>min,fi</sub>                                               | Min. Achsabstand:           | R30 -<br>R120 | [mm]    |                                                                                                                                                        | 35    |        | ;    | 35     | 5    | 50   | 7    | <b>7</b> 5 |  |
| Ccr.N,fi                                                          | Kritischer<br>Randabstand:  | R30 -<br>R120 | [mm]    |                                                                                                                                                        |       |        |      | 2 x h  | ef   |      |      |            |  |
| C <sub>min,fi</sub>                                               | Min. Randabstand:           | R30 -<br>R120 | [mm]    | c <sub>min</sub> = 2 x h <sub>ef</sub> ; bei einseitiger Brandbeanspruchung muss der Abstand<br>zwischen Verankerung und Rand wie folgt sein: ≥ 300 mm |       |        |      |        |      |      |      |            |  |
| Versag                                                            | en durch Betonaus           | sbruch a      | auf der | lastab                                                                                                                                                 | gewan | dten S | eite |        |      |      |      |            |  |
| k <sub>8</sub>                                                    | Betonausbruch-<br>Faktor:   | R30 -<br>R120 | [mm]    | 1,87                                                                                                                                                   | 1,66  | 1,05   | 1,71 | 1,39   | 1,83 | 2,00 | 2,19 | 2,00       |  |

<sup>&</sup>lt;sup>1)</sup> In der Regel kann ein Versagen durch Ausbruch ausgeschlossen werden, wenn es sich um gerissenen Beton handelt und eine Bewehrung vorhanden ist.

| Betonschraube TXE                          |               |
|--------------------------------------------|---------------|
| Merkmale                                   | Anhang<br>C20 |
| Wesentliche Merkmale unter Brandeinwirkung |               |

# <u>Tabelle C20: Wesentliche Merkmale unter Brandeinwirkung, Kopfausführungen aus rostfreiem Stahl N, A, P, W und S</u>

| Wesentliche Merkmale unter |                                            |               |         | Merkmale                                                                                                                                               |       |        |      |        |      |      |      |            |
|----------------------------|--------------------------------------------|---------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|------|--------|------|------|------|------------|
|                            | einwirkung, Kopfau<br>stfreiem Stahl N, A, |               |         | 6                                                                                                                                                      |       |        | 8    |        | 1    | 0    | 1    | 2          |
| h <sub>nom</sub>           | Nenn-Einbautiefe:                          | , P, W ui     | [mm]    | 35                                                                                                                                                     | 40    | 55     | 50   | 65     | 55   | 85   | 75   | 105        |
|                            | ersagen                                    |               | []      |                                                                                                                                                        |       |        |      |        |      |      |      |            |
|                            |                                            | R30           | [kN]    |                                                                                                                                                        | 0,24  |        | 0    | ,79    | 1.   | 64   | 2    | 95         |
|                            | Charakteristische                          | R60           | [kN]    |                                                                                                                                                        | 0,22  |        |      | ,63    |      | 31   |      | 45         |
| $N_{Rk,s,fi}$              | Zugtragfähigkeit:                          | R90           | [kN]    |                                                                                                                                                        | 0,17  |        |      | ,48    |      | .05  | 1.   | 96         |
|                            | 0 0 0                                      | R120          | [kN]    |                                                                                                                                                        | 0,12  |        | 0    | ,40    | 0,   | 92   |      | 57         |
|                            |                                            | R30           | [kN]    |                                                                                                                                                        | 0,24  |        | 0    | ,79    | 1,   | 64   | 2.   | 95         |
| 17                         | Charakteristische                          | R60           | [kN]    |                                                                                                                                                        | 0,22  |        | 0    | ,63    | 1,   | ,31  | 2,   | 45         |
| $V_{Rk,s,fi}$              | Quertragfähigkeit:                         | R90           | [kN]    |                                                                                                                                                        | 0,17  |        | 0    | ,48    | 1,   | ,05  | 1,   | 96         |
|                            |                                            | R120          | [kN]    |                                                                                                                                                        | 0,12  |        | 0    | ,40    | 0,   | 92   | 1,   | 57         |
|                            | Charakteristische                          | R30           | [Nm]    |                                                                                                                                                        | 0,20  |        | 0    | ,84    | 2,   | 24   | 4,   | 94         |
| $M^0$ <sub>Rk,s,fi</sub>   | Tragfähigkeit für                          | R60           | [Nm]    |                                                                                                                                                        | 0,18  |        | 0    | ,67    | 1,   | 79   | 4,12 |            |
| IVI*Rk,s,fi                | Biegemomente:                              | R90           | [Nm]    | 0,14                                                                                                                                                   |       | 0,51   |      | 1,43   |      | 3,29 |      |            |
|                            | Diegemomente.                              | R120          | [Nm]    |                                                                                                                                                        | 0,10  |        | 0,42 |        | 1,26 |      | 2,   | 63         |
| Versag                     | jen durch Herauszi                         | ehen          |         |                                                                                                                                                        |       |        |      |        |      |      |      |            |
| $N_{Rk,p,fi}$              | Charakteristische                          | R30-<br>R90   | [kN]    | 0,25                                                                                                                                                   | 0,63  | 1,88   | 1,25 | 3,09   | 2,30 | 4,72 | 3,50 | 6,57       |
|                            | Tragfähigkeit:                             | R120          | [kN]    | 0,20                                                                                                                                                   | 0,50  | 1,50   | 1,00 | 2,47   | 1,84 | 3,78 | 2,80 | 5,25       |
| Versag                     | en durch Betonaus                          | sbruch 1      | )       |                                                                                                                                                        |       |        |      |        |      |      |      |            |
| N <sub>Rk,c,fi</sub>       | Charakteristische                          | R30-<br>R90   | [kN]    | 0,59                                                                                                                                                   | 0,85  | 2,09   | 1,48 | 3,12   | 1,91 | 6,33 | 4,41 | 10,97      |
|                            | Tragfähigkeit:                             | R120          | [kN]    | 0,47                                                                                                                                                   | 0,68  | 1,67   | 1,19 | 2,50   | 1,53 | 5,06 | 3,53 | 8,78       |
| Scr.N,fi                   | Kritischer<br>Achsabstand:                 | R30 -<br>R120 | [mm]    |                                                                                                                                                        |       |        |      | 4 x he | f    |      |      |            |
| S <sub>min,fi</sub>        | Min. Achsabstand:                          | R30 -<br>R120 | [mm]    |                                                                                                                                                        | 35    |        | ;    | 35     | 5    | 50   | 7    | <b>7</b> 5 |
| Ccr.N,fi                   | Kritischer<br>Randabstand:                 | R30 -<br>R120 | [mm]    | 2 x h <sub>ef</sub>                                                                                                                                    |       |        |      |        |      |      |      |            |
| C <sub>min,fi</sub>        | Min. Randabstand:                          | R30 -<br>R120 | [mm]    | c <sub>min</sub> = 2 x h <sub>ef</sub> ; bei einseitiger Brandbeanspruchung muss der Abstand<br>zwischen Verankerung und Rand wie folgt sein: ≥ 300 mm |       |        |      |        |      |      |      |            |
| Versag                     | en durch Betonaus                          | sbruch a      | auf der | lastab                                                                                                                                                 | gewan | dten S | eite |        |      |      |      |            |
| k <sub>8</sub>             | Betonausbruch-<br>Faktor:                  | R30 -<br>R120 | [mm]    | 1,87                                                                                                                                                   | 1,66  | 1,05   | 1,71 | 1,39   | 1,83 | 2,00 | 2,19 | 2,00       |

<sup>&</sup>lt;sup>1)</sup> In der Regel kann ein Versagen durch Ausbruch ausgeschlossen werden, wenn es sich um gerissenen Beton handelt und eine Bewehrung vorhanden ist.

| Betonschraube TXE                          |               |
|--------------------------------------------|---------------|
| Merkmale                                   | Anhang<br>C21 |
| Wesentliche Merkmale unter Brandeinwirkung |               |

### <u>Tabelle C21: Wesentliche Merkmale unter Brandeinwirkung, Kopfausführung aus rostfreiem</u> Stahl T

|                      | tliche Merkmale un                 | Merkmale                |          |           |                                                                                                                                                              |      |  |  |  |  |
|----------------------|------------------------------------|-------------------------|----------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|--|--|--|
|                      | einwirkung, Kopfaus<br>iem Stahl T |                         | 6        |           |                                                                                                                                                              |      |  |  |  |  |
| h <sub>nom</sub>     | Nenn-Einbautiefe:                  |                         | [mm]     | 35        | 40                                                                                                                                                           | 55   |  |  |  |  |
| Stahlve              | Stahlversagen                      |                         |          |           |                                                                                                                                                              |      |  |  |  |  |
|                      |                                    | R30                     | [kN]     |           | 1,62                                                                                                                                                         |      |  |  |  |  |
| NI                   | Charakteristische                  | R60                     | [kN]     |           | 1,14                                                                                                                                                         |      |  |  |  |  |
| $N_{Rk,s,fi}$        | Zugtragfähigkeit:                  | R90                     | [kN]     |           | 0,67                                                                                                                                                         |      |  |  |  |  |
|                      |                                    | R120                    | [kN]     |           | 0,43                                                                                                                                                         |      |  |  |  |  |
|                      |                                    | R30                     | [kN]     |           | 1,62                                                                                                                                                         |      |  |  |  |  |
| V                    | Charakteristische                  | R60                     | [kN]     |           | 1,14                                                                                                                                                         |      |  |  |  |  |
| $V_{Rk,s,fi}$        | Quertragfähigkeit:                 | R90                     | [kN]     |           | 0,67                                                                                                                                                         |      |  |  |  |  |
|                      |                                    | R120                    | [kN]     |           | 0,43                                                                                                                                                         |      |  |  |  |  |
|                      | Charalda riatio also               | R30                     | [Nm]     |           | 1,40                                                                                                                                                         |      |  |  |  |  |
| N40                  | Charakteristische                  | R60                     | [Nm]     |           | 0,99                                                                                                                                                         |      |  |  |  |  |
| $M^0$ Rk,s,fi        | Tragfähigkeit für<br>Biegemomente: | R90                     | [Nm]     |           | 0,58                                                                                                                                                         |      |  |  |  |  |
|                      | biegemomente.                      | R120                    | [Nm]     |           | 0,37                                                                                                                                                         |      |  |  |  |  |
| Versag               | en durch Herauszie                 | hen                     |          |           |                                                                                                                                                              |      |  |  |  |  |
| $N_{Rk,p,fi}$        | Charakteristische                  | R30-<br>R90             | [kN]     | 0,25      | 0,63                                                                                                                                                         | 1,88 |  |  |  |  |
|                      | Tragfähigkeit:                     | R120                    | [kN]     | 0,20      | 0,50                                                                                                                                                         | 1,50 |  |  |  |  |
| Versag               | en durch Betonaus                  | bruch 1)                |          |           |                                                                                                                                                              |      |  |  |  |  |
| N <sub>Rk,c,fi</sub> | Charakteristische                  | R30-<br>R90             | [kN]     | 0,59      | 0,85                                                                                                                                                         | 2,09 |  |  |  |  |
|                      | Tragfähigkeit:                     | R120                    | [kN]     | 0,47      | 0,68                                                                                                                                                         | 1,67 |  |  |  |  |
| Scr.N,fi             | Kritischer<br>Achsabstand:         | R30 -<br>R120           | [mm]     |           | 4 x h <sub>ef</sub>                                                                                                                                          |      |  |  |  |  |
| S <sub>min,fi</sub>  | Min. Achsabstand:                  | R30 -<br>R120           | [mm]     |           | 35                                                                                                                                                           |      |  |  |  |  |
| Ccr.N,fi             | Kritischer<br>Randabstand:         | R30 -<br>R120           | [mm]     |           | 2 x h <sub>ef</sub>                                                                                                                                          |      |  |  |  |  |
| Cmin,fi              | Min. Randabstand:                  | Randabstand: R30 - [mm] |          |           | c <sub>min</sub> = 2 x h <sub>ef</sub> ; bei einseitiger<br>Brandbeanspruchung muss der<br>Abstand zwischen Verankerung und<br>Rand wie folgt sein: ≥ 300 mm |      |  |  |  |  |
| Versag               | en durch Betonaus                  | bruch a                 | uf der l | astabgewa | andten Seit                                                                                                                                                  | е    |  |  |  |  |
| k <sub>8</sub>       | Betonausbruch-<br>Faktor:          | R30 -<br>R120           | [mm]     | 1,87      | 1,66                                                                                                                                                         | 1,05 |  |  |  |  |

<sup>&</sup>lt;sup>1)</sup> In der Regel kann ein Versagen durch Ausbruch ausgeschlossen werden, wenn es sich um gerissenen Beton handelt und eine Bewehrung vorhanden ist.

| Betonschraube TXE                          |               |
|--------------------------------------------|---------------|
| Merkmale                                   | Anhang<br>C22 |
| Wesentliche Merkmale unter Brandeinwirkung |               |

### <u>Tabelle C22: Wesentliche Merkmale unter Brandeinwirkung, Kopfausführung aus rostfreiem</u> Stahl M

| Wesentliche Merkmale unter<br>Brandeinwirkung, Kopfausführung aus |                                                                   |               |          |                                                                                                                                                           | Merkmale |       |      |      |  |  |
|-------------------------------------------------------------------|-------------------------------------------------------------------|---------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|------|------|--|--|
|                                                                   | einwirkung, Koptaus<br>iem Stahl M                                | stuhrung      | aus      | 6                                                                                                                                                         |          |       | 8    |      |  |  |
| $h_{\text{nom}}$                                                  | Nenn-Einbautiefe:                                                 |               | [mm]     | 35                                                                                                                                                        | 40       | 55    | 50   | 65   |  |  |
| Stahlve                                                           | ersagen                                                           |               |          |                                                                                                                                                           |          |       |      |      |  |  |
|                                                                   |                                                                   | R30           | [kN]     |                                                                                                                                                           | 0,87     |       | (    | 0,87 |  |  |
| NI                                                                | Charakteristische                                                 | R60           | [kN]     |                                                                                                                                                           | 0,72     |       | (    | 0,72 |  |  |
| $N_{Rk,s,fi}$                                                     | Zugtragfähigkeit:                                                 | R90           | [kN]     |                                                                                                                                                           | 0,58     |       | (    | 0,58 |  |  |
|                                                                   |                                                                   | R120          | [kN]     |                                                                                                                                                           | 0,51     |       | (    | 0,51 |  |  |
|                                                                   |                                                                   | R30           | [kN]     |                                                                                                                                                           | 0,87     |       | (    | 0,87 |  |  |
| \/                                                                | Charakteristische                                                 | R60           | [kN]     |                                                                                                                                                           | 0,72     |       | (    | 0,72 |  |  |
| $V_{Rk,s,fi}$                                                     | Quertragfähigkeit:                                                | R90           | [kN]     |                                                                                                                                                           | 0,58     |       | (    | 0,58 |  |  |
|                                                                   |                                                                   | R120          | [kN]     |                                                                                                                                                           | 0,51     |       | (    | 0,51 |  |  |
|                                                                   | Charakteristische                                                 | R30           | [Nm]     |                                                                                                                                                           | 0,75     |       | (    | 0,75 |  |  |
| N40                                                               |                                                                   | R60           | [Nm]     |                                                                                                                                                           | 0,62     |       | (    | 0,62 |  |  |
| IVI°Rk,s,fi                                                       | M <sup>0</sup> <sub>Rk,s,fi</sub> Tragfähigkeit für Biegemomente: |               | [Nm]     | 0,50                                                                                                                                                      |          |       | 0,50 |      |  |  |
|                                                                   | biegemomente.                                                     | R120          | [Nm]     | 0,44                                                                                                                                                      |          |       | 0,44 |      |  |  |
| Versag                                                            | en durch Herauszie                                                | hen           |          |                                                                                                                                                           |          |       |      |      |  |  |
| N <sub>Rk,p,fi</sub>                                              | Charakteristische                                                 | R30-<br>R90   | [kN]     | 0,25                                                                                                                                                      | 0,63     | 1,88  | 1,25 | 3,09 |  |  |
|                                                                   | Tragfähigkeit:                                                    | R120          | [kN]     | 0,20                                                                                                                                                      | 0,50     | 1,50  | 1,00 | 2,47 |  |  |
| Versag                                                            | en durch Betonausl                                                | bruch 1)      |          |                                                                                                                                                           |          |       |      |      |  |  |
| N <sub>Rk,c,fi</sub>                                              | Charakteristische                                                 | R30-<br>R90   | [kN]     | 0,59                                                                                                                                                      | 0,85     | 2,09  | 1,48 | 3,12 |  |  |
|                                                                   | Tragfähigkeit:                                                    | R120          | [kN]     | 0,47                                                                                                                                                      | 0,68     | 1,67  | 1,19 | 2,50 |  |  |
| Scr.N,fi                                                          | Kritischer<br>Achsabstand:                                        | R30 -<br>R120 | [mm]     |                                                                                                                                                           |          | 4 x h | ef   |      |  |  |
| S <sub>min,fi</sub>                                               | Min. Achsabstand:                                                 | R30 -<br>R120 | [mm]     |                                                                                                                                                           | 35       |       |      | 35   |  |  |
| Ccr.N,fi                                                          | Kritischer<br>Randabstand:                                        | R30 -<br>R120 | [mm]     | 2 x h <sub>ef</sub>                                                                                                                                       |          |       |      |      |  |  |
| Cmin,fi                                                           | Min. Randabstand:                                                 | R30 -<br>R120 | [mm]     | c <sub>min</sub> = 2 x h <sub>ef</sub> ; bei einseitiger Brandbeanspruchung<br>muss der Abstand zwischen Verankerung und<br>Rand wie folgt sein: ≥ 300 mm |          |       |      |      |  |  |
| Versag                                                            | en durch Betonausl                                                | bruch auf     | der last | abgewa                                                                                                                                                    | ndten S  | eite  |      |      |  |  |
| k <sub>8</sub>                                                    | Betonausbruch-<br>Faktor:                                         | R30 -<br>R120 | [mm]     | 1,87                                                                                                                                                      | 1,66     | 1,05  | 1,71 | 1,39 |  |  |

<sup>&</sup>lt;sup>1)</sup> In der Regel kann ein Versagen durch Ausbruch ausgeschlossen werden, wenn es sich um gerissenen Beton handelt und eine Bewehrung vorhanden ist.

| Betonschraube TXE                          |               |
|--------------------------------------------|---------------|
| Merkmale                                   | Anhang<br>C23 |
| Wesentliche Merkmale unter Brandeinwirkung |               |

### <u>Tabelle C23: Wesentliche Mekmale unter Brandeinwirkung, Kopfausführung aus rostfreiem</u> Stahl F

| Weser                       | Merkmale                                                    |                           |                      |                                                                                                                                                              |                              |                              |             |                            |
|-----------------------------|-------------------------------------------------------------|---------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------|-------------|----------------------------|
| Brande<br>Kopfar<br>Stahl I | 6 8                                                         |                           |                      |                                                                                                                                                              | 8                            |                              |             |                            |
|                             | Innengewinde                                                |                           | [-]                  | M8/M10                                                                                                                                                       | M10                          | M8/M10                       | M10         | ); M12                     |
| h <sub>nom</sub>            | Nenn-Einbautiefe:                                           |                           | [mm]                 | 35                                                                                                                                                           | 40                           | 55                           | 50          | 65                         |
| Stahlve                     | rsagen                                                      |                           |                      |                                                                                                                                                              |                              |                              |             |                            |
| $N_{Rk,s,fi}$               | N <sub>Rk,s,fi</sub> Charakteristische<br>Zugtragfähigkeit: | R30<br>R60<br>R90         | [kN]<br>[kN]<br>[kN] | 0,26                                                                                                                                                         | 1,01<br>0,83                 | 0,26                         | 1           | ,44<br>,07<br>),70         |
|                             |                                                             | R120                      | [kN]                 | 0,18<br>0,13                                                                                                                                                 | 0,65<br>0,57                 | 0,18<br>0,13                 | C           | ,51                        |
| $V_{Rk,s,fi}$               | Charakteristische<br>Quertragfähigkeit:                     | R30<br>R60<br>R90<br>R120 | [kN]<br>[kN]<br>[kN] | 0,26<br>0,23<br>0,18<br>0,13                                                                                                                                 | 1,01<br>0,83<br>0,65<br>0,57 | 0,26<br>0,23<br>0,18<br>0,13 | 1<br>C      | ,44<br>,07<br>0,70<br>0,51 |
| $M^0_{Rk,s,fi}$             | Charakteristische<br>Tragfähigkeit für<br>Biegemomente:     | R30<br>R60<br>R90<br>R120 | [Nm]<br>[Nm]<br>[Nm] | 0,22<br>0,20<br>0,16<br>0,11                                                                                                                                 | 0,87<br>0,72<br>0,56<br>0,49 | 0,22<br>0,20<br>0,16<br>0,11 | 1<br>1<br>0 | ,62<br>,20<br>),78<br>),57 |
| Versage                     | en durch Herauszi                                           |                           | [INIII]              | 0,11                                                                                                                                                         | 0,49                         | 0,11                         |             | 1,37                       |
| N <sub>Rk,c,fi</sub>        | Charakteristische                                           | R30 -<br>R90              | [kN]                 | 0,25                                                                                                                                                         | 0,63                         | 1,88                         | 1,25        | 3,09                       |
|                             | Tragfähigkeit:                                              | R120                      | [kN]                 | 0,20                                                                                                                                                         | 0,50                         | 1,50                         | 1,00        | 2,47                       |
| Versage                     | en durch Betonaus                                           | sbruch 1                  | )                    |                                                                                                                                                              |                              |                              |             |                            |
| $N_{Rk,c,fi}$               | Charakteristische<br>Tragfähigkeit:                         | R30 -<br>R90              | [kN]                 | 0,59                                                                                                                                                         | 0,85                         | 2,09                         | 1,48        | 3,12                       |
|                             | rragiariigkeit.                                             | R120                      | [kN]                 | 0,47                                                                                                                                                         | 0,68                         | 1,67                         | 1,19        | 2,50                       |
| S <sub>cr.N,fi</sub>        | Kritischer<br>Achsabstand:                                  | R30 -<br>R120             | [mm]                 |                                                                                                                                                              |                              | 4 x h <sub>ef</sub>          |             |                            |
| Smin,fi                     | Min.<br>Achsabstand:                                        | R30 -<br>R120             | [mm]                 |                                                                                                                                                              | 35                           |                              |             | 35                         |
| C <sub>cr.N,fi</sub>        | Kritischer<br>Randabstand:                                  | R30 -<br>R120             | [mm]                 |                                                                                                                                                              |                              | 2 x h <sub>ef</sub>          |             |                            |
| Cmin,fi                     | Min.<br>Randabstand:                                        | R30 -<br>R120             | [mm]                 | c <sub>min</sub> = 2 x h <sub>ef</sub> ; bei einseitiger<br>Brandbeanspruchung muss der Abstand<br>zwischen Verankerung und Rand wie folgt<br>sein: ≥ 300 mm |                              |                              |             |                            |
| Versage                     | en durch Betonaus                                           | sbruch a                  | auf der              | lastabgev                                                                                                                                                    | <u>vandte</u> r              | n Seite                      |             |                            |
| k <sub>8</sub>              | Betonausbruch-<br>Faktor:                                   | R30-<br>R120              | [mm]                 | 1,87                                                                                                                                                         | 1,66                         | 1,05                         | 1,71        | 1,39                       |
|                             |                                                             |                           |                      |                                                                                                                                                              |                              |                              |             |                            |

<sup>&</sup>lt;sup>1)</sup> In der Regel kann ein Versagen durch Ausbruch ausgeschlossen werden, wenn es sich um gerissenen Beton handelt und eine Bewehrung vorhanden ist.

| Betonschraube TXE                          |            |
|--------------------------------------------|------------|
| Merkmale                                   | Anhang C24 |
| Wesentliche Merkmale unter Brandeinwirkung |            |