

Prosecká 811/76a 190 00 Prague Czech Republic eota@tzus.cz

European Technical Assessment

ETA 24/0724 of 02/09/2024

Technical Assessment Body issuing the E for Construction Prague	TA: Technical and Test Institute
Trade name of the construction product	MO-VSF
Product family to which the construction product belongs	Product area code: 33 Bonded injection type anchor for use in uncracked concrete
Manufacturer	Index Técnicas Expansivas, S.L. P.I. La Portalada II C/ Segador 13 26006 Logroño (La Rioja) Spain https://www.indexfix.com/
Manufacturing plant	Index Plant 1
This European Technical Assessment contains	17 pages including 14 Annexes which form an integral part of this assessment
This European Technical Assessment is issued in accordance with regulation (EU) No 305/2011, on the basis of	EAD 330499-01-0601 Bonded fasteners for use in concrete

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body - Technical and Test Institute for Construction Prague. Any partial reproduction has to be identified as such.

1. Technical description of the product

The MO-VSF with steel elements is bonded anchor (injection type). Steel elements can be galvanized or stainless steel threaded rods or rebar. Steel element is placed into a drilled hole filled with injection mortar. The steel element is anchored via the bond between metal part, injection mortar and concrete. The illustration and the description of the product are given in Annex A.

2. Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C 1 to C 3
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 4, C 5
Displacements under short-term and long-term loading	See Annex C 6

3.2 Hygiene, health and environment (BWR 3)

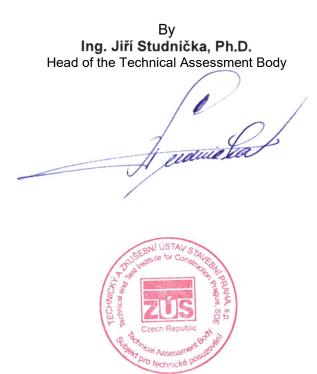
No performance determined.

3.3 General aspects relating to fitness for use

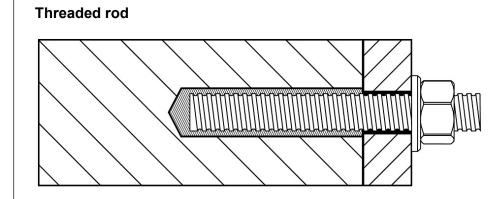
Durability and serviceability are only ensured if the specifications of intended use according to Annex B 1 are kept.

4. Assessment and verification of constancy of performance (AVCP) system applied with reference to its legal base

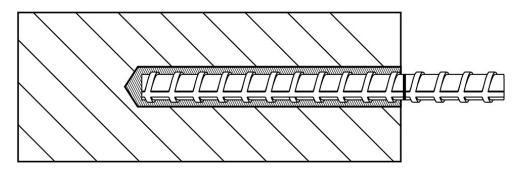
According to the Decision 96/582/EC of the European Commission¹ the system of assessment verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) given in the following table apply.


Product	Intended use	Level or class	System
Metal anchors for use in concrete	For fixing and/or supporting to concrete, structural elements (which contributes to the stability of the works) or heavy units.	-	1

¹ Official Journal of the European Communities L 254 of 08.10.1996

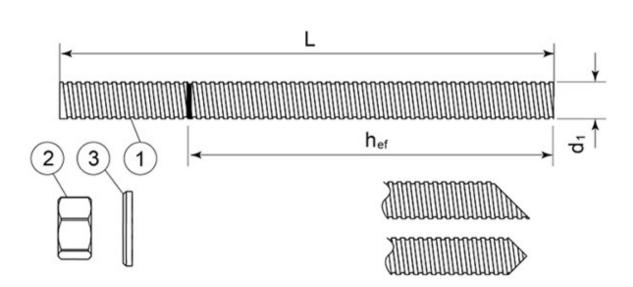

5. Technical details necessary for the implementation of the AVCP system, as provided in the applicable EAD

The factory production control shall be in accordance with the control plan which is a part of the technical documentation of this European Technical Assessment. The control plan is laid down in the context of the factory production control system operated by the manufacturer and deposited at Technical and Test Institute for Construction Prague.² The results of factory production control shall be recorded and evaluated in accordance with the provisions of the control plan.


Issued in Prague on 02.09.2024

² The control plan is a confidential part of the documentation of the European Technical Assessment, but not published together with the ETA and only handed over to the approved body involved in the procedure of AVCP.

Reinforcing bar



MO-VSF

Product description Installed conditions Annex A 1

Coaxial cartridge (CC)	
MO-VSF 150 ml	
380 ml	
400 ml 410 ml	
410111	P
Side by side cartridge (SBS)	
MO-VSF 350 ml	
360 ml	<u> </u>
825 ml	
Two part fail in a single pictor component cortridge (ECC)	
Two part foil in a single piston component cartridge (FCC) MO-VSF 150 ml	
170 ml	
300 ml	
550 ml	
850 ml	
Marking of the mortar cartridges	
Identifying mark of the producer, Trade name, Charge code number, St	orage life,
Curing and processing time	-
····	
Mixing nozzle	
KW	
EZ-Flow	
MO-VSF	
Product description	Annex A 2
Product description	
Injection system	

Threaded rod M8, M10, M12, M16, M20, M24

Standard commercial threaded rod with marked embedment depth

Part		Material					
Stee	l, zinc plated ≥ 5 μm acc. to EN ISO) 4042 or					
	l, Hot-dip galvanized ≥ 40 μm acc. t		0684 or				
Stee	l, zinc diffusion coating ≥ 15 μm ac						
1	Anchor rod	Steel, EN 10087 or EN 10					
		Property class 4.6, 5.8, 8.8	8, 10.9° EN ISO 898-1				
2	Hexagon nut EN ISO 4032	According to threaded rod	, EN 20898-2				
3	Washer EN ISO 887, EN ISO 7089, EN ISO 7093 or EN ISO 7094	According to threaded rod					
Stair	nless steel	· · · ·					
1	Anchor rod	Material: A2-70, A4-70, A4	4-80, EN ISO 3506				
2	Hexagon nut EN ISO 4032	According to threaded rod					
3	Washer EN ISO 887, EN ISO 7089, EN ISO 7093 or EN ISO 7094	According to threaded rod	According to threaded rod				
High	corrosion resistant steel						
1	Anchor rod	Material: 1.4529, 1.4565,	EN 10088-1				
2	Hexagon nut EN ISO 4032	According to threaded rod					
3	Washer EN ISO 887, EN ISO 7089, EN ISO 7093 or EN ISO 7094	According to threaded rod					
*Galv	vanized rod of high strength are sensi	tive to hydrogen induced brittle	failure				
D-VS	F						
oduc	t description		Annex A 3				

Threaded rod and materials

Rebar Ø8, Ø10, Ø12, Ø16, Ø20, Ø25

Standard commercial reinforcing bar with marked embedment depth

Product form		Bars and de	-coiled rods		
Class		ВС			
Characteristic yield strength fyk or fo	_{0,2k} (MPa)	400 to 600			
Minimum value of $k = (f_t/f_y)_k$	inimum value of $k = (f_t/f_y)_k$				
Characteristic strain at maximum for	prce ε_{uk} (%)	≥ 5,0			
Bendability		Bend/Rebend test			
Maximum deviation from nominal	Nominal bar size (mm)				
mass (individual bar) (%)	≤ 8	±6	, 0		
	> 8	±4,5			
Bond: Minimum relative rib area,	Nominal bar size (mm)				
f _{R,min}	8 to 12	0,0	40		
	> 12	0,0	56		

MO-VSF

Product description Rebars and materials Annex A 4

Specifications of intended use

Anchorages subject to:

• Static and quasi-static load.

Base materials

- Uncracked concrete.
- Reinforced or unreinforced normal weight concrete of strength class C20/25 at minimum and C50/60 at maximum according EN 206-1:2000-12.

Temperature range:

- T1: -40°C to +40°C (max. short. term temperature +40°C and max. long term temperature +24°C)
- T2: -40°C to +80°C (max. short. term temperature +80°C and max. long term temperature +50°C)

Use conditions (Environmental conditions)

- (X1) Structures subject to dry internal conditions (zinc coated steel, stainless steel, high corrosion resistance steel).
- (X2) Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel A4, high corrosion resistant steel).
- (X3) Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

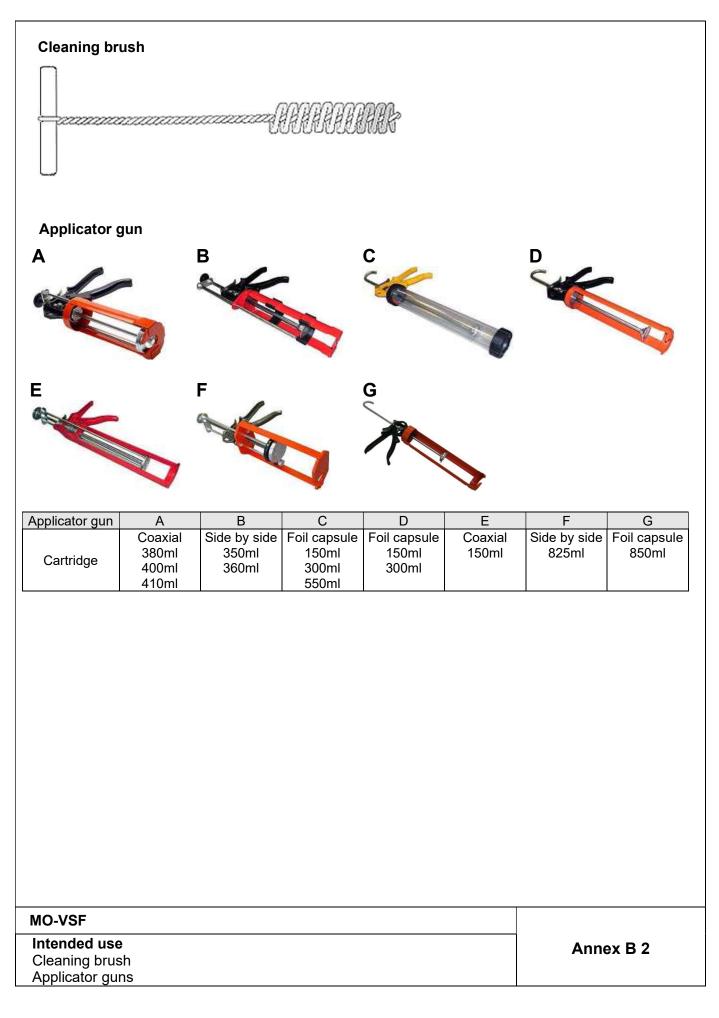
Concrete conditions:

- I1 installation in dry or wet (water saturated) concrete and use in service in dry or wet concrete.
- I2 installation in water-filled (not sea water) and use in service in dry or wet concrete

Design:

- The anchorages are designed in accordance with the EN 1992-4 under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings.

Installation:


- Hole drilling by hammer drilling or dustless drilling
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Installation direction:

• D3 – downward and horizontal and upwards (e.g. overhead) installation

MO-VSF

Intended use Specifications Annex B 1

SOLID SUBSTRATE INSTALLATION METHOD

1. Using the SDS hammer drill (HD) in rotary hammer mode for drilling, with a carbide tipped drill bit of the appropriate size, drill the hole to the specified hole diameter and depth.

Kİ

2. Select the correct air lance, insert to the bottom of the hole, and depress the trigger for 2 seconds. The compressed air must be clean and free from water and oil, with a minimum pressure of 90 psi (6 bar). A manual pump may be used for certain diameters and depths; check the approval document. Perform the blowing operation twice.

3. Select the correct size hole cleaning brush. Ensure that the brush is in good condition and of the correct diameter. Insert the brush to the bottom of the hole, using a brush extension if needed to reach the bottom. Withdraw with a twisting motion. There should be a positive interaction between the bristles of the brush and the sides of the drilled hole. Perform the brushing operation twice.

4. Repeat step 2 (blowing operation x2)

5. Repeat step 3 (brushing operation x2)

6. Repeat step 2 (blowing operation x2)

7. Select the most appropriate static mixer nozzle, checking that the mixing elements are present and fit for purpose. Never modify the mixer. Attach the mixer nozzle to the cartridge. Check the dispensing tool is in good working order. Place the cartridge into the dispensing tool.

8. Extrude some resin to waste until an even coloured mixture is achieved. The cartridge is now ready for use.

9. Insert the mixing nozzle to the bottom of the hole. Extrude the resin and slowly withdraw the nozzle from the hole. Ensure no air voids are created as the nozzle is withdrawn. Inject resin until the hole is approximately ³/₄ full and remove the nozzle from the hole.

10. Select the steel anchor element ensuring it is free from oil or other contaminants, and mark with the required embedment depth. Insert the steel element into the hole using a back and forth twisting motion to ensure complete cover, until it reaches the bottom of the hole. Excess resin will be expelled from the hole evenly around the steel element and there shall be no gaps between the anchor element and the wall of the drilled hole.

11. Clean any excess resin from around the mouth of the hole.

12. Refer to the working and loading times within the tables to determine the appropriate cure time.

13. Position the fixture and tighten the anchor to the appropriate installation torque. Do not over-torque the anchor, as this could adversely affect its performance.

MO-VSF

Intended use Installation procedure

DEEP EMBEDMENT & OVERHEAD INSTALLATION METHOD

1a. Perform steps 1-8 under "solid substrate installation method".

2a. Attach the correct diameter and length extension tube to the nozzle. Select the correct diameter resin stopper for the application, then push and screw the extension tube into the resin stopper. This is held in place with a coarse internal thread. The resin stopper is a reusable accessory.

3a. Push the resin stopper and extension tube to the back of the drill hole.

4a. Ensure the extension tube is angled to allow free movement of the resin stopper as the resin is extruded.

5a. Continue from step 10 under "solid substrate installation method".

Size			M8	M10	M12	M16	M20	M24
Nominal drill hole diameter	Ød₀	[mm]	10	12	14	18	22	26
Diameter of cleaning brush	d⊾	[mm]	14	14	20	20	29	29
Torque moment	max T _{fix}	[Nm]	10	20	40	80	150	200
Depth of drill hole for hef,min	$h_0 = h_{ef}$	[mm]	64	80	96	128	160	192
Depth of drill hole for hef,max	$h_0 = h_{ef}$	[mm]	96	120	144	192	240	288
Minimum edge distance	Cmin	[mm]	35	40	50	65	80	96
Minimum spacing	Smin	[mm]	35	40	50	65	80	96
Minimum thickness of member	h _{min}	[mm]	he	_{ef} + 30 mn	n ≥ 100 m	ım	h _{ef} +	- 2d ₀

Table B2: Installation parameters of rebar

Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25
Nominal drill hole diameter	Ød₀	[mm]	12	14	16	20	25	32
Diameter of cleaning brush	db	[mm]	14	14	19	22	29	40
Manual pump cleaning				he	_{ef} < 300 mr	n		
Depth of drill hole for hef,min	h _{ef}	[mm]	60	60	70	80	90	100
Depth of drill hole for hef,max	h _{ef}	[mm]	160	200	240	320	400	480
Depth of drill hole	h₀	[mm]	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5
Minimum edge distance	Cmin	[mm]	40	40	50	70	80	100
Minimum spacing	Smin	[mm]	40	40	50	70	80	100
Minimum thickness of member	h _{min}	[mm]	h _{ef} + 3	0 mm ≥ 10	00 mm		h _{ef} + 2do)

Table B3: Minimum curing time

Resin cartridge temperature [°C]	T Work [mins]	Base material Temperature [°C]	T Load [mins]
min +5	18	min +5	145
+5 to +10	10	+5 to +10	145
+10 to +20	6	+10 to +20	85
+20 to +25	5	+20 to +25	50
+25 to +30	4	+25 to +30	40
+30	4	+30	35

MO-VSF	
Intended use	Annex B 4
Installation parameters	
Curing times	

Table C1: Design method EN 1992-4

Steel failure - Characteristic values of resistance to tension load of threaded rod

Steel failure – Characteristic resistance								
Size			M8	M10	M12	M16	M20	M24
Steel grade 4.6	N _{Rk,s}	[kN]	15	23	34	63	98	141
Partial safety factor	γ _{Ms}	[-]			2	,0		
Steel grade 5.8	N _{Rk,s}	[kN]	18	29	42	79	123	177
Partial safety factor	γ _{Ms}	[-]			1	,5		
Steel grade 8.8	N _{Rk,s}	[kN]	29	46	67	126	196	282
Partial safety factor	γ _{Ms}	[-]	1,5					
Steel grade 10.9	N _{Rk,s}	[kN]	37	58	84	157	245	353
Partial safety factor	γ _{Ms}	[-]			1	,4		
Stainless steel grade A2-70, A4-70	N _{Rk,s}	[kN]	26	41	59	110	172	247
Partial safety factor	γ _{Ms}	[-]			1	,9		
Stainless steel grade A4-80	$N_{Rk,s}$	[kN]	29	46	67	126	196	282
Partial safety factor	γ _{Ms}	[-]			1	,6		
Stainless steel grade 1.4529	$N_{Rk,s}$	[kN]	26	41	59	110	172	247
Partial safety factor	γ _{Ms}	[-]	1,5					
Stainless steel grade 1.4565	N _{Rk,s}	[kN]	26	41	59	110	172	247
Partial safety factor	γMs	[-]			1	,9		

Table C2: Design method EN 1992-4

Steel failure - Characteristic values of resistance to tension load of rebar

Steel failure – Characteristic resistance								
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25
Rebar BSt 500 S	N _{Rk,s}	[kN]	28	43	62	111	173	270
Partial safety factor	γMs	[-]	1,4					

MO-VSF

Performances

Steel failure characteristic resistance

 Table C3: Design method EN 1992-4

 Characteristic values of resistance to tension load of threaded rod

Combined pullout and concrete cone fa	ailure i	n uncrac	ked co	oncrete	e C20/2	25		
Size			M8	M10	M12	M16	M20	M24
Characteristic bond resistance in uncracked	d concr	ete						
T1: 24°C / 40°C Dry/wet concrete	τ _{Rk,ucr}	[N/mm ²]	8,0	8,0	7,5	7,5	6,5	6,0
T1: 24°C / 40°C Flooded hole	τ _{Rk,ucr}	[N/mm ²]	8,0	8,0	7,5	7,0	5,5	5,0
T2: 50°C / 80°C Dry/wet concrete	τRk,ucr	[N/mm ²]	7,0	7,0	6,5	6,5	6,0	5,5
T2: 50°C / 80°C Flooded hole	τRk,ucr	[N/mm ²]	7,0	7,0	6,5	6,0	5,0	4,5
Installation safety factor								
Dry, wet concrete	γinst	[-]	1,2					
Hammer drilling - flooded hole	γinst	[-]			1	,2		
Factor for influence of sustained T1: 24°C / 40°C load for a working life 50 years T2: 50°C / 80°C		[-]			0,	60		
C25/3	0				1,	05		
C30/3	7				1,	10		
Factor for concrete	5	Г 1			1,	15		
C40/50	ο Ψ _c	[-]			1,	18		
C45/5	5				1,	22		
C50/6	0				1,	25		

Concrete cone failure			
Factor for concrete cone failure	Kucr,N	[-]	11
Edge distance	C _{cr,N}	[mm]	1,5h _{ef}

Splitting failure								
Size			M8	M10	M12	M16	M20	M24
Edge distance	C _{cr,sp}	[mm]	2,0h _{ef}			1,5h _{ef}		
Spacing	S _{cr,sp}	[mm]		4,0h _{ef}			3,0h _{ef}	

MO-VSF	
Performances Characteristic resistance for tension loads – threaded rod	Annex C 2

Table C4: Design method EN 1992-4
Characteristic values of resistance to tension load of rebar

Combined pullout and co	ncrete cone fa	ilure i	n uncrac	ked c	oncret	e C20/2	25			
Size				Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	
Characteristic bond resistar	nce in uncracke	d conc	rete							
T1: 24°C / 40°C Dry/wet co	ncrete	$\tau_{Rk,ucr}$	[N/mm ²]	6,0	6,0	6,0	5,5	5,5	5,0	
T1: 24°C / 40°C Flooded ho	ble	$ au_{Rk,ucr}$	[N/mm ²]	6,0	6,0	6,0	5,5	5,0	4,0	
T2: 50°C / 80°C Dry/wet co	ncrete	$\tau_{Rk,ucr}$	[N/mm ²]	5,0	5,0	5,0	4,5	4,5	4,0	
T2: 50°C / 80°C Flooded ho	ble	$ au_{Rk,ucr}$	[N/mm ²]	5,0	5,0	5,0	4,5	4,0	3,0	
Installation safety factor										
Dry, wet concrete		γinst	[-]			1	,2			
Hammer drilling - flooded h	ole	γinst	[-]			1	,2			
Factor for influence of sustained load for a working life 50 years	T1: 24°C / 40°C T2: 50°C / 80°C	Ψ^0 sus	[-]			0,	60			
Factor for concrete	C25/30 C30/37 C35/45 C40/50 C45/55 C50/60	Ψϲ	[-]			1, 1, 1, 1,	03 06 10 12 14 15			
Concrete cone failure										
Factor for concrete cone fai	lure	k _{ucr,N}	[-]	11						
Edge distance										
Splitting failure										
Size				Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	
Edge distance		Caran	[mm]			2.	hat			

Size		Ø8	Ø10	Ø12	Ø16	Ø20	Ø
Edge distance	c _{cr,sp} [mm]			2•	h _{ef}		
Spacing	s _{cr,sp} [mm]			2•	C _{cr,sp}		

MO-VSF	
--------	--

Performances

Characteristic resistance for tension loads - rebar

Table C5: Design method EN 1992-4 Characteristic values of resistance to shear load of threaded rod

Size			M8	M10	M12	M16	M20	M24
Steel grade 4.6	V _{Rk,s}	[kN]	7	12	17	31	49	71
Partial safety factor	γMs	[-]	1,67					
Steel grade 5.8	V _{Rk,s}	[kN]	9	15	21	39	61	88
Partial safety factor	γMs	[-]			1,:	25		
Steel grade 8.8	$V_{Rk,s}$	[kN]	15	23	34	63	98	141
Partial safety factor	γMs	[-]			1,1	25		
Steel grade 10.9	$V_{Rk,s}$	[kN]	18	29	42	79	123	177
Partial safety factor	γMs	[-]			1,	,5		
Stainless steel grade A2-70, A4-70	$V_{Rk,s}$	[kN]	13	20	30	55	86	124
Partial safety factor	γMs	[-]			1,	56		
Stainless steel grade A4-80	V _{Rk,s}	[kN]	15	23	34	63	98	141
Partial safety factor	γMs	[-]			1,	33		
Stainless steel grade 1.4529	V _{Rk,s}	[kN]	13	20	30	55	86	124
Partial safety factor	γMs	[-]			1,2	25		
Stainless steel grade 1.4565	V _{Rk,s}	[kN]	13	20	30	55	86	124
Partial safety factor	γMs	[-]	1,56					
Characteristic resistance of group of fa	steners							
Ductility factor $k_7 = 1,0$ for steel with rupture		; > 8%						

Steel failure with lever arm								
Size			M8	M10	M12	M16	M20	M24
Steel grade 4.6	M ^o Rk,s	[N.m]	15	30	52	133	260	449
Partial safety factor	γMs	[-]			1,	67		
Steel grade 5.8	M ^o Rk,s	[N.m]	19	37	66	166	325	561
Partial safety factor	γMs	[-]			1,:	25		
Steel grade 8.8	M ^o Rk,s	[N.m]	30	60	105	266	519	898
Partial safety factor	γMs	[-]			1,:	25		
Steel grade 10.9	M ^o Rk,s	[N.m]	37	75	131	333	649	1123
Partial safety factor	γMs	[-]			1,	50		
Stainless steel grade A2-70, A4-70	M ^o Rk,s	[N.m]	26	52	92	233	454	786
Partial safety factor	γMs	[-]			1,	56		
Stainless steel grade A4-80	M ^o Rk,s	[N.m]	30	60	105	266	519	898
Partial safety factor	γMs	[-]			1,	33		
Stainless steel grade 1.4529	M ^o Rk,s	[N.m]	26	52	92	233	454	786
Partial safety factor	γMs	[-]			1,:	25		
Stainless steel grade 1.4565	M ^o Rk,s	[N.m]	26	52	92	233	454	786
Partial safety factor	γMs	[-]	1,56					
Concrete pry-out failure			_					
Factor for resistance to pry-out failure	k ₈	[-]				2		

Concrete edge failure				_	-	-	
Size		M8	M10	M12	M16	M20	M24
Outside diameter of fastener d _{nor}	[mm]	8	10	12	16	20	24
Effective length of fastener	f [mm]		1	min (h _{ef}	, 8 d _{nom})	

MO-VSF

Performances

Characteristic resistance for shear loads - threaded rod

Table C6: Design method EN 1992-4 Characteristic values of resistance to shear load of rebar

		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25		
$V_{Rk,s}$	[kN]	14	22	31	55	86	135		
γMs	[-]			1	,5				
of fasteners									
1,0 for steel with ru	pture elo	ongatio	n A ₅ > 8	3%	55 86 13 1,5				
	γ_{Ms} of fasteners	γ _{Ms} [-]	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	V _{Rk,s} [kN] 14 22 31 γ _{Ms} [-] 1	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	V _{Rk,s} [kN] 14 22 31 55 86 γ _{Ms} [-] 1,5		

Steel failure with lever arm										
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25		
Rebar BSt 500 S	M ^o Rk,s	[N.m]	33	65	112	265	518	1013		
Partial safety factor	γMs	[-]	1,5							
Concrete pryout failure										
Factor for resistance to pry-out failure	k 8	[-]	2							

Concrete edge failure									
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	16	20	25	
Effective length of fastener	lf	[mm]	min (h _{ef} , 8 d _{nom})						

MO-VSF

Performances Characteristic resistance for shear loads - rebar

Table C7: Displacement of threaded rod under tension and shear load

Anchor size		M8	M10	M12	M16	M20	M24			
Tension load										
δ_{N0}	[mm/kN]	0,05	0,05	0,05	0,03	0,03	0,03			
δ_{N^∞}	[mm/kN]	0,09	0,08	0,05	0,03	0,03	0,03			
Shear load										
δ _{V0}	[mm/kN]	0,03	0,02	0,03	0,03	0,03	0,05			
δ_{V^∞}	[mm/kN]	0,06	0,03	0,05	0,05	0,05	0,08			

 Table C8: Displacement of rebar under tension and shear load

Size		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25		
Tension load									
δ_{N0}	[mm/kN]	0,06	0,06	0,06	0,05	0,05	0,05		
δ _{N∞}	[mm/kN]	0,20	0,18	0,12	0,09	0,08	0,05		
Shear	Shear load								
δ_{V0}	[mm/kN]	0,03	0,03	0,02	0,02	0,02	0,02		
δγ∞	[mm/kN]	0,05	0,05	0,03	0,03	0,02	0,02		

MO-VSF

Performances Displacement