

Prosecká 811/76a 190 00 Prague Czech Republic eota@tzus.cz

European Technical Assessment

ETA 17/0659 of 22/09/2021

Technical Assessment Body issuing the E for Construction Prague	TA: Technical and Test Institute
Trade name of the construction product	MOPUR3
Product family to which the construction product belongs	Product area code: 33 Bonded injection type anchor for use in cracked and uncracked concrete for a working life of 50 and/or 100 years
Manufacturer	Index Técnicas Expansivas, S.L. P.I. La Portalada II C. Segador 13 26006 Logroño Spain
Manufacturing plant	Index Plant 1
This European Technical Assessment contains	21 pages including 17 Annexes which form an integral part of this assessment.
This European Technical Assessment is issued in accordance with regulation (EU) No 305/2011, on the basis of	EAD 330499-01-0601 Bonded fasteners for use in concrete
This version replaces	ETA 17/0659 issued on 17/07/2019

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body - Technical and Test Institute for Construction Prague. Any partial reproduction has to be identified as such.

1. Technical description of the product

The MOPUR3 with steel elements is bonded anchor (injection type).

Steel elements can be galvanized or stainless steel threaded rods or rebars.

Steel element is placed into a drilled hole filled with injection mortar. The steel element is anchored via the bond between metal part, injection mortar and concrete. The anchor is intended to be used with various embedment depth up to 20 diameters.

The illustration and the description of the product are given in Annex A.

2. Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed working life of the anchor of 50 years and/or 100 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C 1, C 2
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 3, C 4
Displacements under short-term and long-term loading	See Annex C 5
Characteristic resistance and displacement for seismic performance categories C1 and C2	See Annex C 6, C 7, C 8

3.2 Hygiene, health and environment (BWR 3)

No performance determined.

3.3 General aspects relating to fitness for use

Durability and serviceability are only ensured if the specifications of intended use according to Annex B 1 are kept.

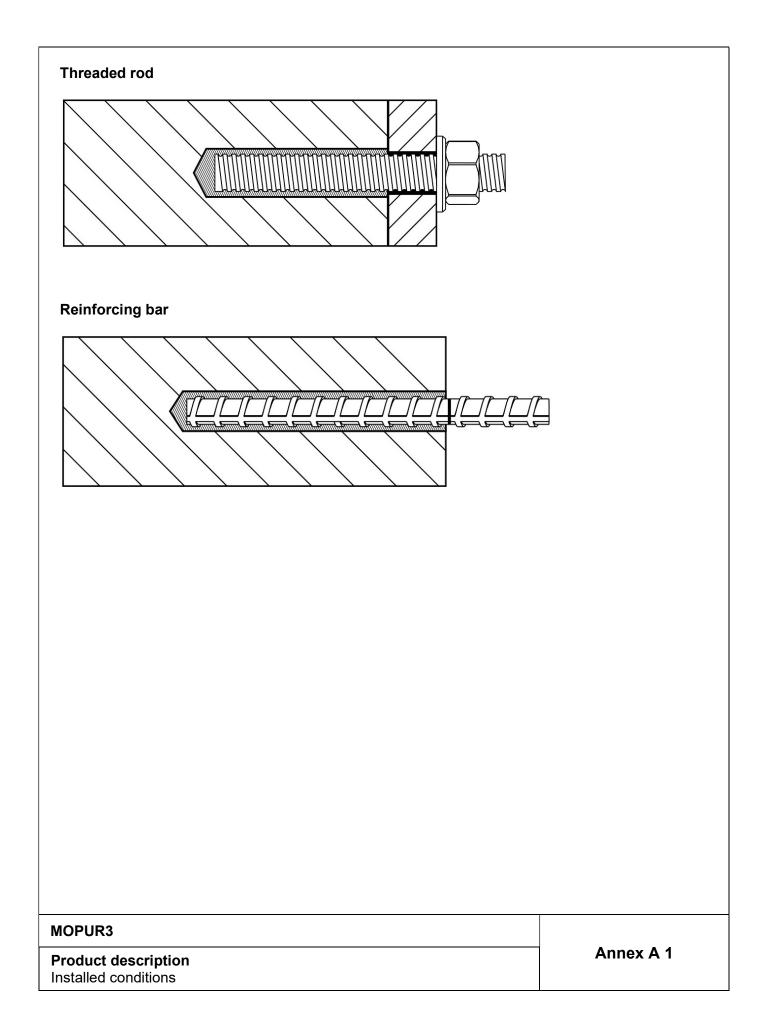
4. Assessment and verification of constancy of performance (AVCP) system applied with reference to its legal base

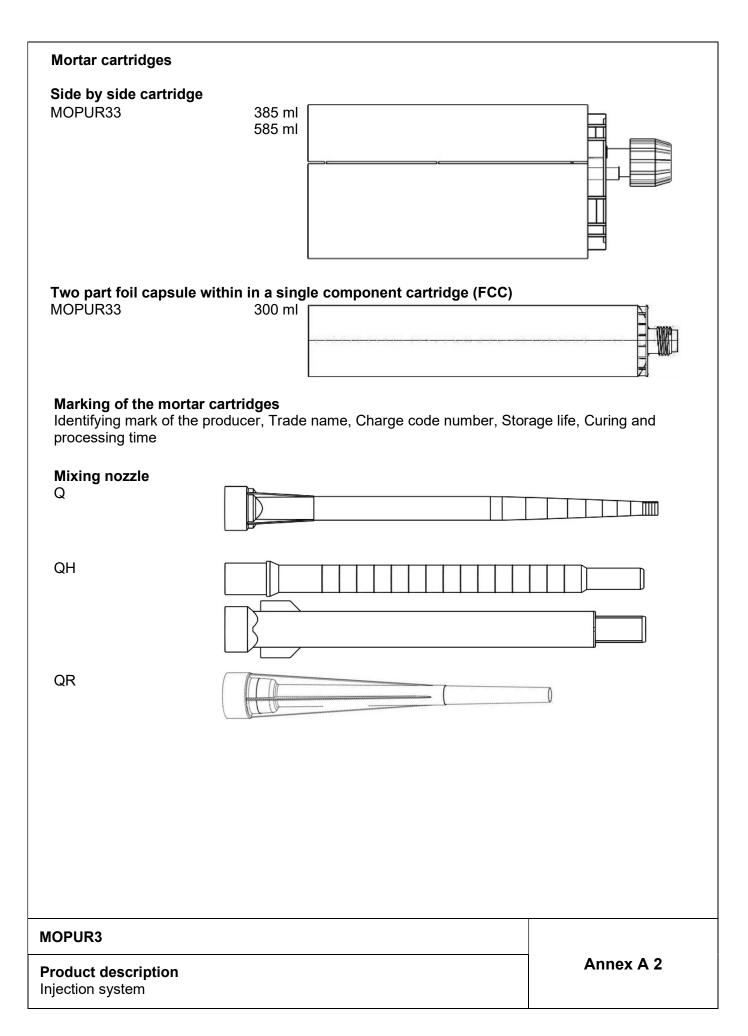
According to the Decision 96/582/EC of the European Commission¹ the system of assessment verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) given in the following table apply.

Product	Intended use	Level or class	System
Metal anchors for use in concrete	For fixing and/or supporting to concrete, structural elements (which contributes to	-	1
	the stability of the works) or heavy units		

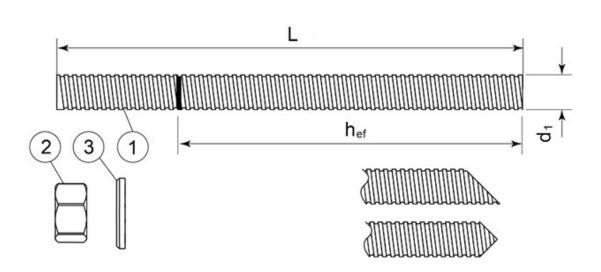
¹ Official Journal of the European Communities L 254 of 08.10.1996

5. Technical details necessary for the implementation of the AVCP system, as provided in the applicable EAD


The factory production control shall be in accordance with the control plan which is a part of the technical documentation of this European Technical Assessment. The control plan is laid down in the context of the factory production control system operated by the manufacturer and deposited at Technický a zkušební ústav stavební Praha, s.p.² The results of factory production control shall be recorded and evaluated in accordance with the provisions of the control plan.


Issued in Prague on 22.09.2021

By



² The control plan is a confidential part of the documentation of the European Technical Assessment, but not published together with the ETA and only handed over to the approved body involved in the procedure of AVCP.

Threaded rod M8, M10, M12, M16, M20, M24, M27, M30

Standard commercial threaded rod with marked embedment depth

Part	Designation	Material
Steel,	zinc plated \ge 5 µm acc. to EN ISO 40 Hot-dip galvanized \ge 40 µm acc. to E zinc diffusion coating \ge 15 µm acc. t	N ISO 1461 and EN ISO 10684 or
1	Anchor rod	Steel, EN 10087 or EN 10263 Property class 4.6, 4.8, 5.8, 8.8, 10.9* EN ISO 898-1
2	Hexagon nut EN ISO 4032	According to threaded rod, EN 20898-2
3	Washer EN ISO 887, EN ISO 7089, EN ISO 7093 or EN ISO 7094	According to threaded rod
Stainl	ess steel	
1	Anchor rod	Material: A2-70, A4-70, A4-80, EN ISO 3506
2	Hexagon nut EN ISO 4032	According to threaded rod
3	Washer EN ISO 887, EN ISO 7089, EN ISO 7093 or EN ISO 7094	According to threaded rod
High o	corrosion resistant steel	
1	Anchor rod	Material: 1.4529, 1.4565, EN 10088-1
2	Hexagon nut EN ISO 4032	According to threaded rod
3	Washer EN ISO 887, EN ISO 7089, EN ISO 7093 or EN ISO 7094	According to threaded rod
Galvan	ized rod of high strength are sensitive t	o hydrogen induced brittle failure
OPUR	3	

Product description Threaded rod and materials Annex A 3

Rebar Ø8, Ø10, Ø12, Ø16, Ø20, Ø25, Ø32

Standard commercial reinforcing bar with marked embedment depth

Product form		Bars and de	-coiled rods			
Class		B C				
Characteristic yield strength fyk or fo	400 to 600					
Minimum value of k = (f _t /f _y) _k	≥ 1,08	≥ 1,15 < 1,35				
Characteristic strain at maximum for	≥ 5,0	≥ 7,5				
Bendability		Bend/Rebend test				
Maximum deviation from nominal	Nominal bar size (mm)					
mass (individual bar) (%)	≤ 8	±6,0				
	> 8	±4	-,5			
Bond: Minimum relative rib area,	Nominal bar size (mm)					
f _{R,min}	8 to 12	0,0	40			
	> 12	0,0	56			

MOPUR3

Product description Rebars and materials Annex A 4

Specifications of intended use

Anchorages subject to:

- Static and quasi-static load
- Seismic actions category C1 (max w = 0,5 mm):
 - threaded rod size M8, M10, M12, M16, M20, M24, M27, M30
 - rebar size Ø10, Ø12, Ø16, Ø20, Ø25, Ø32
- Seismic actions category C2 (max w = 0,8 mm): threaded rod size M12, M16, M20

Base materials

- Cracked and uncracked concrete
- Reinforced or unreinforced normal weight concrete of strength class C20/25 at minimum and C50/60 at maximum according EN 206:2013.

Temperature range:

• T3: -40°C to +70°C (max. short. term temperature +70°C and max. long term temperature +50°C)

Use conditions (Environmental conditions)

- (X1) Structures subject to dry internal conditions (zinc coated steel, stainless steel, high corrosion resistance steel).
- (X2) Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel A4, high corrosion resistant steel).
- (X3) Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Concrete conditions:

- I1 installation in dry or wet (water saturated) concrete and use in service in dry or wet concrete.
- I2 installation in water-filled (not sea water) and use in service in dry or wet concrete

Design:

- The anchorages are designed in accordance with the EN 1992-4 under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings.
- Anchorages under seismic actions (cracked concrete) have to be designed in accordance with EN 1992-4.

Installation:

- Hole drilling by hammer drill mode.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Installation direction:

• D3 – downward and horizontal and upwards (e.g. overhead) installation

MOPUR3

Intended use Specifications

Applicator gur	า					
Α		В		С		
			R			
D		E				
		Y AN				
	\sum					
Applicator gun	A	B	C		D	E
Cartridge	Side by side 385 ml	Side by side 385 ml	Side by side 385 ml	Side 58	by side 5 ml	Foil capsule 300 ml
Brush extensi						
MOPUR3						
Intended use Applicator guns						Annex B 2
Cleaning brush						

Installation instructions

Before commencing installation ensure the operative is equipped with appropriate personal protection equipment, SDS Hammer Drill, Air, Hole Cleaning Brush, good quality Dispensing Tool - either manual or power operated, Chemical cartridge with mixing nozzle and extension tube, if needed.

- 1. Using the SDS Hammer Drill in rotary hammer mode for drilling, with a carbide tipped drill bit of the appropriate size, drill the hole to the specified hole diameter and depth.
- 2. Insert the Air Lance to the bottom of the hole and depress the trigger for 2 seconds. The compressed air must be clean - free from water and oil - and at a

minimum pressure of 6bar.

Perform the blowing operation twice.

Select the correct size Hole 3 Cleaning Brush. Ensure that the brush is in good condition and the correct diameter. Insert the brush to the bottom of the hole, using a brush

extension if needed to reach the bottom of the hole and withdraw with a twisting motion. There should be positive interaction between the steel bristles of the brush and the sides of the drilled hole.

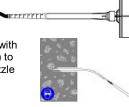
Perform the brushing operation twice.

- 4. Repeat 2
- 5. Repeat 3
- 6. Repeat 2
- Select the appropriate static mixer 7. nozzle, checking that the mixing elements are present and correct (do not modify the mixer). Attach mixer nozzle to the cartridge. Check the Dispensing Tool is in good working order. Place the cartridge into the dispensing tool.

Note: The QH nozzle is in two

section is an extension piece.

sections. One section contains the mixing elements and the other


Connect the extension piece to the

mixing section by pushing the two

sections firmly together until a positive engagement

Fird

- 8. Extrude some resin to waste until an even-colored mixture is extruded, The cartridge is now ready for use
- 9. Attach an extension tube with resin stopper (if required) to the end of the mixing nozzle with a push fit

(The extension tubes may be pushed into the resin stoppers and are held in place with a coarse internal thread).

10. Insert the mixing nozzle to the bottom of the hole. Extrude the resin and slowly withdraw the nozzle from the hole. Ensure no air voids are created as the nozzle is withdrawn. Inject resin until the hole is approximately 3/4 full and remove the nozzle from the hole.

11. Select the steel anchor element ensuring it is free from oil or other contaminants, and mark with the required embedment depth. Insert the steel element into the hole using a back and forth twisting

motion to ensure complete cover, until it reaches the bottom of the hole. Excess resin will be expelled from the hole evenly around the steel element and there shall be no gaps between the anchor element and the wall of the drilled hole.

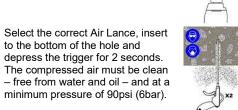
- 12. Clean any excess resin from around the mouth of the hole.
- 13. Do not disturb the anchor until at least the minimum cure time has elapsed. Refer to the Working and Load Timetable to determine the appropriate cure time.

14. Position the fixture and tighten the anchor to the appropriate installation torque.

> Do not over-torque the anchor as this could adversely affect its performance.

MOPUR3

is felt.


Intended use Installation procedure Annex B 3

Installation instructions

Overhead Substrate Installation Method

Using the SDS Hammer Drill in 1. rotary hammer mode for drilling, with a carbide tipped drill bit of the appropriate size, drill the hole to the specified hole diameter and depth.

to the bottom of the hole and

Perform the blowing operation twice.

Select the correct size Hole Cleaning 3 Brush. Ensure that the brush is in good condition and the correct diameter. Insert the brush to the bottom of the hole, using a brush extension if needed to reach the bottom of the hole, and withdraw with a twisting motion. There

should be positive interaction between the steel bristles of the brush and the sides of the drilled hole.


Perform the brushing operation twice.

- 4. Repeat 2
- Repeat 3 5
- 6. Repeat 2

2.

7. Select the appropriate static mixer nozzle checking that the mixing elements are present and correct (do not modify the mixer). Attach mixer nozzle to the cartridge. Check the Dispensing Tool is in good working order. Place the cartridge into the dispensing tool.

> Note: The QH nozzle is in two sections. One section contains the mixing elements and the other section is an extension piece. Connect the extension piece to the mixing section by pushing the two

sections firmly together until a positive engagement is felt.

- 8. Extrude some resin to waste until an even-colored mixture is extruded, The cartridge is now ready for use
- 9. Attach an extension tube with resin stopper (if required) to the end of the mixing nozzle with a push fit. (The extension tubes may be pushed into the resin stoppers and are held in place with a coarse internal thread).
- 10. Insert the mixing nozzle to the bottom of the hole. Extrude the resin and slowly withdraw the nozzle from the hole. Ensure no air voids are created as the nozzle is withdrawn. Inject resin until the hole is approximately 3/4 full and remove the nozzle from the hole.

ensuring it is free from oil or other

contaminants, and mark with the

required embedment depth. Insert the steel element into the hole using

a back and forth twisting motion to ensure complete cover, until it

reaches the bottom of the hole.

11. Select the steel anchor element

Excess resin will be expelled from the hole evenly around the steel element and there shall be no gaps between the anchor element and the wall of the drilled hole.

- Clean any excess resin from around the mouth of the 12 hole.
- Do not disturb the anchor until at 13. least the minimum cure time has elapsed. Refer to the Working and Load Timetable to determine the appropriate cure time.
- 14. Position the fixture and tighten the anchor to the appropriate installation torque.

Do not over-torque the anchor as this could adversely affect its performance.

MOPUR3	
Intended use Installation procedure	Annex B 4

Table B1: Installation parameters of threaded rod

Size			M8	M10	M12	M16	M20	M24	M27	M30
Nominal drill hole diameter	Ød ₀	[mm]	10	12	14	18	22	26	30	35
Cleaning brush			S11HF	S14HF	S14/15HF	S22HF	S24HF	S31HF	S31HF	S38HF
Torque moment	max T _{fixt}	[Nm]	10	20	40	80	120	160	180	200
Embedment depth for hef,min	h _{ef}	[mm]	60	60	70	80	90	96	108	120
Embedment depth for hef,max	h _{ef}	[mm]	160	200	240	320	400	480	540	600
Depth of drill hole	h ₀	[mm]	h _{ef} +5	h _{ef} +5	h _{ef} +5					
Minimum edge distance	Cmin	[mm]	40	40	40	40	50	50	50	60
Minimum spacing	Smin	[mm]	40	40	40	40	50	50	50	60
Minimum thickness of member	h _{min}	[mm]	h _{ef} +	30 mm ≥ 1	100 mm			h _{ef} + 2d ₀		

Table B2: Installation parameters of rebar

Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32	
Nominal drill hole diameter	Ød ₀	[mm]	12	14	16	20	25	32	40	
Cleaning brush			S12/13HF	S14/15HF	S18HF	S22HF	S27HF	S35HF	S43HF	
Torque moment	max T _{fxt}	[Nm]	10	20	40	80	120	180	200	
Embedment depth for h _{ef,min}	h _{ef}	[mm]	60	60	70	80	90	100	128	
Embedment depth for hef,max	h _{ef}	[mm]	160	200	240	320	400	500	640	
Depth of drill hole	h ₀	[mm]	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	
Minimum edge distance	Cmin	[mm]	40	40	40	40	50	50	70	
Minimum spacing	Smin	[mm]	40	40	40	40	50	50	70	
Minimum thickness of member	h _{min}	[mm]	h _{ef} + ;	30 mm ≥ 100) mm	h _{ef} + 2d ₀				

Table B3: Minimum curing time

Base Material Temperature [°C]	Cartridge Temperature [°C]	T Work [mins]	T Load [hrs]
+5		300	24
+5°C to +10	Minimum +10	150	24
+10°C to +15	+10°C to +15	40	18
+15°C to +20	+15°C to +20	25	12
+20°C to +25	+20°C to +25	18	8
+25°C to +30	+25°C to +30	12	6
+30°C to +35	+30°C to +35	8	4
+35°C to +40	+35°C to +40	6	2
	Ensure cartridge is ≥ 10°	С	

T Work is typical gel time at highest base material temperature in the range.

T Load is minimum set time required until load can be applied at the lowest temperature in the range.

MOPUR3	
Intended use Installation parameters Curing time	Annex B 5

ize teel grade 4.6 artial safety factor teel grade 4.8	N _{Rk,s}	[kN]	M8	M10	M12	M16	M20	M24	M27	M30
artial safety factor			15	23	34	63	98	141	184	224
	γMs	[-]			•••	2,0				
	N _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
artial safety factor	γMs	[-]	10	20	01	1,			101	
teel grade 5.8	N _{Rk,s}	[kN]	18	29	42	79	123	177	230	281
artial safety factor	γMs	[-]	10	20		1,			200	201
teel grade 8.8	N _{Rk,s}	[kN]	29	46	67	126	196	282	367	449
artial safety factor	γMs	[-]		10	01	1,		202	001	1 1 10
teel grade 10.9	N _{Rk,s}	[kN]	37	58	84	157	245	353	459	561
artial safety factor	γMs	[-]	01	00	01	1.		000	100	001
tainless steel grade A2-70, A4-70	N _{Rk,s}		26	41	59	110	172	247	321	393
artial safety factor	γMs		20		00	1,8		211	021	000
tainless steel grade A4-80	N _{Rk,s}	[kN]	29	46	67	126	196	282	367	449
artial safety factor	γMs	[-]		10	01	1,0		202	001	1 1 10
tainless steel grade 1.4529	N _{Rk,s}		26	41	59	110	172	247	321	393
artial safety factor	γMs	[-]	20		00		50	211	021	
tainless steel grade 1.4565	N _{Rk,s}	[kN]	26	41	59	110	172	247	321	393
artial safety factor	γMs	[-]	20	1 - 1	00	1,8		271	021	000
ombined pullout and concrete cone fai			20/25	for a w	orking			ars an	d 100	vear
ize			M8	M10	-			M24		M3
haracteristic bond resistance in uncrac	kad aa	noroto				IVIIO	IVIZU			
emperature T3: -40°C to +70°C			14	12	13	12	12	11	10	9
	τRk,ucr		14	13	13	12	12	11	10	9
ry, wet concrete, flooded hole artial safety factor		[-]	r –			1.	0			
haracteristic bond resistance in cracke	γinst	b d				I,	,0			
				0	7.5	7.5	7	7	5	5
emperature T3: -40°C to +70°C ry, wet concrete, flooded hole	τRk,cr	[N/mm ²]	8	8	7,5	7,5	1	7	5	5
artial safety factor		[-]				1.	0			
actor for influence of	γinst	[-]				1,	,0			
ustained load for a T3: 50°C / 70°C	·0	[-]				0,	72			
orking life 50 years	γ ψ sus	[-]				0,	12			
C25/30)					1 (02			
C30/37						1,0				
C35/4						1,0				
actor for concrete C40/50		[-]				1,0				
C45/55						1,0				
C50/60			1,09							
oncrete cone failure		ł	•							
actor for concrete cone failure			1							
r uncracked concrete	kucr,N					1	1			
actor for concrete cone failure	,	[-]				-	7			
r cracked concrete	k _{cr,N}					7,	,/			
dge distance	Ccr,N	[mm]				1,5	hef			
plitting failure	,					,				
ze			M8	M10	M12	M16	M20	M24	M27	M3
dge distance	C _{cr,sp}	[mm]					h _{ef}			
pacing	Scr,sp	[mm]				2 • 0				
caonig	Oci,sp	[]				2 (zci,sp			

Table C1: Design method EN 1992-4 Characteristic values of resistance to tension load of threaded rod

MOPUR3	
Performances Design according to EN 1992-4	Annex C 1
Characteristic resistance for tension loads - threaded rod	

Size Rebar BSt 500 S	resistance									
Rehar BSt 500 S				Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
		N _{Rk,s}	[kN]	28	43	62	111	173	270	442
Partial safety factor		γMs	[-]				1,4			
Combined pullout and concre	ete cone fail	ure in	concrete (220/25	for a wo	orking li	ife of 50) years	and 10) years
Size				Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Characteristic bond resistand	e in uncrac	ked co	ncrete							
Femperature T3: -40°C to +70°	С	τ _{Rk,ucr}	[N/mm ²]	12	12	12	11	11	11	7
Dry and wet concrete					1					
nstallation safety factor		γinst	[-]				1,0			
Flooded hole										
nstallation safety factor		γinst	[-]				1,2			
Characteristic bond resistand	e in cracked	d conc	rete							
Femperature T3: -40°C to +70°	С	$\tau_{\rm Rk,cr}$	[N/mm ²]	7	10	9	9	8	8	5
Dry and wet concrete					·				·	·
nstallation safety factor		γinst	[-]				1,0			
Flooded hole										
nstallation safety factor		γinst	[-]				1,2			
Factor for influence of										
	50°C / 70°C	Ψ^0 sus	[-]				0,72			
vorking life 50 years	C25/30						1,02			
	C30/37						1,04			
Factor for concrete	C35/45	Ψc	[-]				1,06			
	C40/50	Ψ°					1,07			
	C45/55 C50/60						1,08 1,09			
							.,			
oncrete cone failure										
actor for concrete cone failure		k _{ucr,N}					11			
or uncracked concrete			[-]							
or cracked concrete		K cr,N					7,7			
dge distance		Ccr,N	[mm]				1,5h _{ef}			
Splitting failure					-	ī	ī	1	Ĩ	-
Size				Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Edge distance		Ccr,sp	[mm]				2 • h _{ef}			
Spacing		S _{cr,sp}	[mm]				2 • c _{cr,sp})		

teel failure without lever arm ize		M8	M10	M12	M16	M20	M24	M27	M30
teel grade 4.6	V _{Rk,s} [kN]	7	12	17	31	49	71	92	112
artial safety factor	γ _{Ms} [-]				1,	67			
teel grade 4.8	V _{Rk,s} [kN]	7	12	17	31	49	71	92	112
artial safety factor	γMs [-]		1			25			
teel grade 5.8	V _{Rk,s} [kN]	9	15	21	39	61	88	115	140
artial safety factor	γMs [-]				1,	25			
teel grade 8.8	V _{Rk,s} [kN]	15	23	34	63	98	141	184	224
artial safety factor	γ _{Ms} [-]				1,	25			
teel grade 10.9	V _{Rk,s} [kN]	18	29	42	79	123	177	230	281
artial safety factor	γMs [-]				1	,5			
tainless steel grade A2-70, A4-70	V _{Rk,s} [kN]	13	20	30	55	86	124	161	196
artial safety factor	γMs [-]				1,	56			
tainless steel grade A4-80	V _{Rk,s} [kN]	15	23	34	63	98	141	184	224
artial safety factor	γms [-]					33			
tainless steel grade 1.4529	V _{Rk,s} [kN]	13	20	30	55	86	124	161	196
artial safety factor	γms [-]					25			
tainless steel grade 1.4565	V _{Rk,s} [kN]	13	20	30	55	86	124	161	196
artial safety factor	γMs [-]				1,	56			
haracteristic resistance of group of faste									
Puctility factor $k_7 = 1,0$ for steel with rupt	ure elongation A ₅ :	> 8%							
teel failure with lever arm		•				-			
ize		M8	M10	M12	M16	M20	M24	M27	M30
teel grade 4.6	M ^o _{Rk,s} [N.m]	15	30	52	133	260	449	666	900
artial safety factor	γms [-]					67			
teel grade 4.8	M ^o _{Rk,s} [N.m]	15	30	52	133	260	449	666	900
artial safety factor	γMs [-]		,			25			
teel grade 5.8	M ^o _{Rk,s} [N.m]	19	37	66	166	325	561	832	1125
artial safety factor	γMs [-]		1	,		25		,,	
teel grade 8.8	M ^o _{Rk,s} [N.m]	30	60	105	266	519	898	1332	1799
artial safety factor	γms [-]		1	,		25		r	
teel grade 10.9	M ^o _{Rk,s} [N.m]	37	75	131	333	649	1123	1664	2249
artial safety factor	γ _{Ms} [-]			r		50		· · · · ·	
tainless steel grade A2-70, A4-70	M ^o _{Rk,s} [N.m]	26	52	92	233	454	786	1165	1574
artial safety factor	γMs [-]					56			
tainless steel grade A4-80	M ^o _{Rk,s} [N.m]	30	60	105			898	1332	1799
artial safety factor	γMs [-]		-		,	33			
tainless steel grade 1.4529	M ^o _{Rk,s} [N.m]	26	52	92	233	454	786	1165	1574
artial safety factor	γMs [-]					25		[
tainless steel grade 1.4565	M ^o _{Rk,s} [N.m]	26	52	92	233	454	786	1165	1574
artial safety factor	γMs [-]				1,	56			
oncrete pryout failure						_			
actor for resistance to pry-out failure	k ₈ [-]					2			
oncrete edge failure							1101	140-	1.100
ize		M8	M10	M12	M16	M20	M24	M27	M30
	d _{nom} [mm]	8	10	12	16	20	24	27	30
Outside diameter of fastener		1			min (h _{et}	f. ŏ dnor	n)		
Outside diameter of fastener ffective length of fastener	ℓ _f [mm]				(5	, - noi	,		
	ℓ _f ∣ [mm]	1			()	.) - 1101	,		

 Table C3: Design method EN 1992-4

 Characteristic values of resistance to shear load of the
 odod

Performances

Design according to EN 1992-4 Characteristic resistance for shear loads - threaded rod Annex C 3

Table C4: Design method EN 1992-4 Characteristic values of resistance to shear load of rebar

Steel failure without lever	ann			1					
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Rebar BSt 500 S	V _{Rk,s}	[kN]	14	22	31	55	86	135	221
Partial safety factor	γMs	[-]		·		1,5			
Characteristic resistance of	group of fasteners								
Ductility factor	$k_7 = 1.0$ for steel v	with rup	ture elor	ndation A	5 > 8%				

Steel failure with lever arm Size Ø8 Ø10 Ø12 Ø16 Ø20 Ø25 Ø32 M^o_{Rk,s} [N.m] γ_{Ms} [-] Rebar BSt 500 S 33 65 112 265 518 1013 2122 Partial safety factor 1,5 Concrete pryout failure 2 k₈ [-] Factor for resistance to pry-out failure

Concrete edge failure			-	-	-		-	_
Size		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Outside diameter of fastener d _{nom} [mn	n]	8	10	12	16	20	25	32
Effective length of fastener $\ell_{\rm f}$ [mn	n]			min	(h _{ef} , 8 d	nom)		

MOPUR3

Performances

Design according to EN 1992-4 Characteristic resistance for shear loads - rebar Annex C 4

Table C5: Displacement of threaded rod under tension and shear load

Size		M8	M10	M12	M16	M20	M24	M27	M30
Tensio	on load								
Uncra	cked conc	rete							
δ _{N0}	[mm/kN]	0,03	0,02	0,02	0,02	0,01	0,01	0,01	0,01
δ _{N∞}	[mm/kN]	0,05	0,04	0,03	0,03	0,02	0,02	0,01	0,01
Crack	ed concret	te							
δ _{N0}	[mm/kN]	0,05	0,04	0,03	0,03	0,02	0,02	0,02	0,02
δ _{N∞}	[mm/kN]	0,35	0,21	0,14	0,12	0,08	0,07	0,07	0,07
Shear	load								
δ _{V0}	[mm/kN]	0,71	0,45	0,31	0,17	0,11	0,07	0,06	0,05
δγ∞	[mm/kN]	1,06	0,67	0,46	0,25	0,16	0,11	0,08	0,07

Table C6: Displacement of rebar under tension and shear load

Size		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Tensi	on load							
Uncra	icked conc	rete						
δ _{N0}	[mm/kN]	0,04	0,03	0,02	0,01	0,01	0,01	0,01
δ _{N∞}	[mm/kN]	0,08	0,05	0,04	0,02	0,02	0,01	0,01
Crack	ed concre	te						
δ _{N0}	[mm/kN]	0,05	0,04	0,03	0,03	0,02	0,02	0,02
δ _{N∞}	[mm/kN]	0,35	0,21	0,17	0,11	0,08	0,07	0,06
Shear	load							
δ_{V0}	[mm/kN]	0,38	0,24	0,17	0,10	0,06	0,04	0,02
δv∞	[mm/kN]	0,56	0,36	0,25	0,14	0,09	0,06	0,04

MOPUR3

Performances

Displacement for threaded rod and rebar

Table C7:	Seismic perform	mance category C	1 of threaded rod
-----------	-----------------	------------------	-------------------

Size			M8	M10	M12	M16	M20	M24	M27	M30
Tension load										
Steel failure										
Characteristic resistance grade 4.6	N _{Rk,s,eq,C1}	[kN]	15	23	34	63	98	141	184	224
Partial safety factor	γMs	[-]		1		2,	00			
Characteristic resistance grade 4.8	N _{Rk,s,eq,C1}	[kN]	15	23	34	63	98	141	184	224
Partial safety factor	γMs	[-]					50			
Characteristic resistance grade 5.8	N _{Rk,s,eq,C1}	[kN]	18	29	42	79	123	177	230	281
Partial safety factor	γMs	[-]		1		1,				
Characteristic resistance grade 8.8	N _{Rk,s,eq,C1}	[kN]	29	46	67	126	196	282	367	449
Partial safety factor	γMs	[-]		1			50			
Characteristic resistance grade 10.9	N _{Rk,s,eq,C1}	[kN]	37	58	84	157	245	353	459	561
Partial safety factor	γMs	[-]		1		1,	33			
Characteristic resistance A2-70, A4-70	N _{Rk,s,eq,C1}	[kN]	26	41	59	110	172	247	321	393
Partial safety factor	γMs	[-]		1		1,8	87			
Characteristic resistance A4-80	N _{Rk,s,eq,C1}	[kN]	29	46	67	126	196	282	367	449
Partial safety factor	γMs	[-]			• ·		60			
Characteristic resistance 1.4529	N _{Rk,s,eq,C1}	[kN]	26	41	59	110	172	247	321	393
Partial safety factor	γMs	[-]		1		1,			•= ·	
Characteristic resistance 1.4565	N _{Rk,s,eq,C1}	[kN]	26	41	59	110	172	247	321	393
Partial safety factor	γMs	[-]		1		1,8				
Combined pullout and concrete cone fai		ete C20/25	for a	workin	a life o	,		d 100	vears	
Characteristic bond resistance					9				<i>j</i> • • • • •	
Temperature T3: -40°C to +70°C	τ _{Rk,p,eq,C1}	[N/mm ²]	8,0	8,0	7,5	7,5	7,0	7,0	5,0	4,5
	€RK,p,eq,CT				1,0	1,0	1,0	1,0	0,0	1,0
nstallation safety factor	γinst	[-]	-,-			1	,0			
Installation safety factor Shear load Steel failure without lever arm		[-]								1
Installation safety factor Shear load Steel failure without lever arm Characteristic resistance grade 4.6	γinst VRk,s,eq,C1	[-] [kN]	5	9	13	20	32	28	37	45
Installation safety factor Shear load Steel failure without lever arm Characteristic resistance grade 4.6 Partial safety factor	VRk,s,eq,C1 γMs	[-]	5	9		20 1,	32 67	-	-	1
Installation safety factor Shear load Steel failure without lever arm Characteristic resistance grade 4.6 Partial safety factor Characteristic resistance grade 4.8	V _{Rk,s,eq,C1}	[-] [kN] [-] [kN]			13 13	20 1,0 20	32 67 32	28	37 37	45
Installation safety factor Shear load Steel failure without lever arm Characteristic resistance grade 4.6 Partial safety factor Characteristic resistance grade 4.8 Partial safety factor	VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs	[-] [kN] [-] [kN] [-]	5	9	13	20 1,0 20 1,7	32 67 32 25	28	37	45
Installation safety factor Shear load Steel failure without lever arm Characteristic resistance grade 4.6 Partial safety factor Characteristic resistance grade 4.8 Partial safety factor Characteristic resistance grade 5.8	VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1	[-] [kN] [-] [kN] [-] [kN]	5	9		20 1,1 20 1,2 26	32 67 32 25 40	-	-	-
Installation safety factor Shear load Steel failure without lever arm Characteristic resistance grade 4.6 Partial safety factor Characteristic resistance grade 4.8 Partial safety factor Characteristic resistance grade 5.8 Partial safety factor	VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs	[-] [kN] [-] [kN] [-] [kN] [-]	5	9 9 11	13 16	20 1,0 20 1,5 26 1,5	32 67 32 25 40 25	28 35	37 46	45 56
Installation safety factor Shear load Steel failure without lever arm Characteristic resistance grade 4.6 Partial safety factor Characteristic resistance grade 4.8 Partial safety factor Characteristic resistance grade 5.8 Partial safety factor Characteristic resistance grade 5.8 Partial safety factor Characteristic resistance grade 8.8	VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1	[-] [kN] [-] [kN] [-] [kN] [-] [kN]	5	9	13	20 1, 20 1, 26 1, 41	32 67 32 25 40 25 64	28	37	45
Installation safety factor Shear load Steel failure without lever arm Characteristic resistance grade 4.6 Partial safety factor Characteristic resistance grade 4.8 Partial safety factor Characteristic resistance grade 5.8 Partial safety factor Characteristic resistance grade 5.8 Partial safety factor Characteristic resistance grade 8.8 Partial safety factor	VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs	[-] [kN] [-] [kN] [-] [kN] [-] [kN] [-]	5 5 7 11	9 9 11 17	13 16 25	20 1,1 20 1,7 26 1,7 41 1,1	32 67 32 25 40 25 64 25	28 35 56	37 46 73	45 56 90
Installation safety factor Shear load Steel failure without lever arm Characteristic resistance grade 4.6 Partial safety factor Characteristic resistance grade 4.8 Partial safety factor Characteristic resistance grade 5.8 Partial safety factor Characteristic resistance grade 5.8 Partial safety factor Characteristic resistance grade 8.8 Partial safety factor Characteristic resistance grade 8.8 Partial safety factor Characteristic resistance grade 10.9	VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1	[-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN]	5	9 9 11	13 16	20 1,1 20 1,7 26 1,7 41 1,7 51	32 67 32 25 40 25 64 25 80	28 35	37 46	45 56 90
Installation safety factor Shear load Steel failure without lever arm Characteristic resistance grade 4.6 Partial safety factor Characteristic resistance grade 4.8 Partial safety factor Characteristic resistance grade 5.8 Partial safety factor Characteristic resistance grade 8.8 Partial safety factor Characteristic resistance grade 10.9 Partial safety factor	VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs	[-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-]	5 5 7 11 14	9 9 11 17 22	13 16 25 32	20 1,1 20 1,2 26 1,2 41 1,2 51	32 67 25 40 25 64 25 80 50	28 35 56 71	37 46 73 92	45 56 90 112
Installation safety factor Shear load Steel failure without lever arm Characteristic resistance grade 4.6 Partial safety factor Characteristic resistance grade 4.8 Partial safety factor Characteristic resistance grade 5.8 Partial safety factor Characteristic resistance grade 8.8 Partial safety factor Characteristic resistance grade 10.9 Partial safety factor Characteristic resistance A2-70, A4-70	VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1	[-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN]	5 5 7 11	9 9 11 17	13 16 25	20 1,1 20 1,2 26 1,2 41 51 51 1,3 36	32 37 32 25 40 25 64 25 80 50 56	28 35 56	37 46 73	45 56 90
Installation safety factor Shear load Steel failure without lever arm Characteristic resistance grade 4.6 Partial safety factor Characteristic resistance grade 4.8 Partial safety factor Characteristic resistance grade 5.8 Partial safety factor Characteristic resistance grade 8.8 Partial safety factor Characteristic resistance grade 10.9 Partial safety factor Characteristic resistance A2-70, A4-70 Partial safety factor	VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs	[-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-]	5 5 7 11 14 10	9 9 11 17 22 15	13 16 25 32 22	20 1,1 20 26 1,7 41 1,7 51 36 1,7	32 67 32 25 40 25 64 25 80 50 56	28 35 56 71 49	37 46 73 92 64	45 56 90 112 79
Installation safety factor Shear load Steel failure without lever arm Characteristic resistance grade 4.6 Partial safety factor Characteristic resistance grade 4.8 Partial safety factor Characteristic resistance grade 5.8 Partial safety factor Characteristic resistance grade 8.8 Partial safety factor Characteristic resistance grade 10.9 Partial safety factor Characteristic resistance A2-70, A4-70 Partial safety factor Characteristic resistance A2-80	VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1	[-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN]	5 5 7 11 14	9 9 11 17 22	13 16 25 32	20 1,1 20 26 1,7 41 1,7 51 1,1 36 1,1 41	32 67 32 25 40 25 64 25 80 50 56 56 64	28 35 56 71	37 46 73 92	45 56 90 112
Installation safety factor Shear load Steel failure without lever arm Characteristic resistance grade 4.6 Partial safety factor Characteristic resistance grade 4.8 Partial safety factor Characteristic resistance grade 5.8 Partial safety factor Characteristic resistance grade 5.8 Partial safety factor Characteristic resistance grade 8.8 Partial safety factor Characteristic resistance grade 10.9 Partial safety factor Characteristic resistance A2-70, A4-70 Partial safety factor Characteristic resistance A2-70, A4-70 Partial safety factor	VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs	[-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [-]	5 5 7 11 14 10 11	9 9 11 17 22 15 17	13 16 25 32 22 25	20 1, 20 1, 26 1, 41 1, 51 1, 36 1, 41 1, 1, 36	32 67 32 25 40 25 64 25 80 50 50 56 56 64 33	28 35 56 71 49 56	37 46 73 92 64 73	45 56 90 112 79 90
Installation safety factor Shear load Steel failure without lever arm Characteristic resistance grade 4.6 Partial safety factor Characteristic resistance grade 4.8 Partial safety factor Characteristic resistance grade 5.8 Partial safety factor Characteristic resistance grade 5.8 Partial safety factor Characteristic resistance grade 8.8 Partial safety factor Characteristic resistance grade 10.9 Partial safety factor Characteristic resistance A2-70, A4-70 Partial safety factor Characteristic resistance A4-80 Partial safety factor Characteristic resistance A4-80 Partial safety factor Characteristic resistance A4-80 Partial safety factor	VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1	[-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN]	5 5 7 11 14 10	9 9 11 17 22 15	13 16 25 32 22	20 1, 20 1, 26 1, 41 1, 51 1, 36 1, 41 1, 36 1, 36	32 67 32 25 40 25 64 25 80 50 56 56 64 33 56	28 35 56 71 49	37 46 73 92 64	45 56 90 112 79
Installation safety factor Shear load Steel failure without lever arm Characteristic resistance grade 4.6 Partial safety factor Characteristic resistance grade 4.8 Partial safety factor Characteristic resistance grade 5.8 Partial safety factor Characteristic resistance grade 5.8 Partial safety factor Characteristic resistance grade 8.8 Partial safety factor Characteristic resistance grade 10.9 Partial safety factor Characteristic resistance A2-70, A4-70 Partial safety factor Characteristic resistance A4-80 Partial safety factor Characteristic resistance 1.4529 Partial safety factor	VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs	[-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [-]	5 5 7 11 14 10 11 10	9 9 11 17 22 15 17 15	13 16 25 32 22 25 22 22	20 1,, 20 1,, 26 1,, 41 1,, 51 1,, 36 1,, 41 1,, 36 1,, 36 1,, 1,, 36 1,, 1,, 36 1,, 1,, 36 1,, 1,, 1,, 1,, 1,, 1,, 1,, 1,	32 67 32 25 40 25 64 25 80 50 56 56 56 56 64 33 56 25	28 35 56 71 49 56 49	37 46 73 92 64 73 64	45 56 90 112 79 90 79
Installation safety factor Shear load Steel failure without lever arm Characteristic resistance grade 4.6 Partial safety factor Characteristic resistance grade 4.8 Partial safety factor Characteristic resistance grade 5.8 Partial safety factor Characteristic resistance grade 5.8 Partial safety factor Characteristic resistance grade 8.8 Partial safety factor Characteristic resistance grade 10.9 Partial safety factor Characteristic resistance A2-70, A4-70 Partial safety factor Characteristic resistance A2-80 Partial safety factor Characteristic resistance 1.4529 Partial safety factor Characteristic resistance 1.4565	VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs	[-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN]	5 5 7 11 14 10 11	9 9 11 17 22 15 17	13 16 25 32 22 25	20 1,, 20 1,, 26 1,, 41 1,, 51 1,, 36 1,, 36 1,, 36 1,, 36	32 67 32 25 40 25 64 25 80 50 56 56 56 56 64 33 56 25 56	28 35 56 71 49 56	37 46 73 92 64 73	45 56 90 112 79 90 79
Installation safety factor Shear load Steel failure without lever arm Characteristic resistance grade 4.6 Partial safety factor Characteristic resistance grade 4.8 Partial safety factor Characteristic resistance grade 5.8 Partial safety factor Characteristic resistance grade 5.8 Partial safety factor Characteristic resistance grade 8.8 Partial safety factor Characteristic resistance grade 10.9 Partial safety factor Characteristic resistance A2-70, A4-70 Partial safety factor Characteristic resistance A4-80 Partial safety factor Characteristic resistance 1.4529 Partial safety factor Characteristic resistance 1.4565 Partial safety factor	VRk,s,eq,C1 γMs	[-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [-] [kN]	5 5 7 11 14 10 10 10 10	9 9 11 17 22 15 17 15 15 15	13 16 25 32 22 25 22 22 22 22	20 1,, 20 1,; 26 1,; 41 1,; 51 1,; 36 1	32 67 32 25 40 25 64 25 80 50 56 56 56 64 33 56 25 56 56 56 56 56 56 56 56 56 5	28 35 56 71 49 56 49 49	37 46 73 92 64 73 64 64	45 56 90 1112 79 90 79 79
nstallation safety factor Shear load Steel failure without lever arm Characteristic resistance grade 4.6 Partial safety factor Characteristic resistance grade 4.8 Partial safety factor Characteristic resistance grade 5.8 Partial safety factor Characteristic resistance grade 5.8 Partial safety factor Characteristic resistance grade 8.8 Partial safety factor Characteristic resistance grade 10.9 Partial safety factor Characteristic resistance A2-70, A4-70 Partial safety factor Characteristic resistance A4-80 Partial safety factor Characteristic resistance 1.4529 Partial safety factor Characteristic resistance 1.4565 Partial safety factor Characteristic resistance 1.4565 Partial safety factor	VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs	[-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [c] [c] [c] [c] [c] [c] [c] [c] [c] [c	5 5 7 11 14 10 10 10 10 be muli	9 9 11 17 22 15 17 15 15 15 15	13 16 25 32 22 25 22 22 22 22	20 1,, 20 1,; 26 1,; 41 1,; 51 1,; 36 1	32 67 32 25 40 25 64 25 80 50 56 56 56 64 33 56 25 56 56 56 56 56 56 56 56 56 5	28 35 56 71 49 56 49 49	37 46 73 92 64 73 64 64	45 56 90 112 79 90 79 79
nstallation safety factor Shear load Steel failure without lever arm Characteristic resistance grade 4.6 Partial safety factor Characteristic resistance grade 4.8 Partial safety factor Characteristic resistance grade 5.8 Partial safety factor Characteristic resistance grade 5.8 Partial safety factor Characteristic resistance grade 8.8 Partial safety factor Characteristic resistance grade 10.9 Partial safety factor Characteristic resistance A2-70, A4-70 Partial safety factor Characteristic resistance A4-80 Partial safety factor Characteristic resistance 1.4529 Partial safety factor Characteristic resistance 1.4565 Partial safety factor Characteristic resistance 1.4565 Partial safety factor	VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs	[-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [c] [c] [c] [c] [c] [c] [c] [c] [c] [c	5 5 7 11 14 10 10 10 10 be muli	9 9 11 17 22 15 17 15 15 15 15	13 16 25 32 22 25 22 22 22 22	20 1,, 20 1,; 26 1,; 41 1,; 51 1,; 36 1	32 67 32 25 40 25 64 25 80 50 56 56 56 64 33 56 25 56 56 56 56 56 56 56 56 56 5	28 35 56 71 49 56 49 49	37 46 73 92 64 73 64 64	45 56 90 112 79 90 79 79

The anchor shall be used with minimum rupture elongation after fracture A_5 equal to 19%.

MOPUR3

Performances

Seismic performance category C1 of threaded rod

Table C8: Seismic performance category C1 of rebar

Size			Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Tension load				•		•		
Steel failure								
Rebar BSt 500 S	N _{Rk,s,eq,C1}	[kN]	43	62	111	173	270	442
Partial safety factor	γMs	[-]			1	,4		
Combined pullout and concrete cone	failure in concre	ete C20/25	for a w	orking lif	fe of 50 y	ears and	d 100 yea	irs
Temperature T3: -40°C to +70°C	τ _{Rk,p,eq,C1}	[N/mm ²]	8,9	9,0	9,0	8,0	7,5	4,8
Dry and wet concrete								
Installation safety factor	γinst	[-]			1	,0		
Flooded hole								
Installation safety factor	γinst	[-]			1	,2		
Shear load								
Steel failure without lever arm								
Rebar BSt 500 S	V _{Rk,s,eq,C1}	[kN]	16	23	41	69	67	111
Partial safety factor	γMs	[-]			1	,5	•	
Factor for annular gap	αgap	[-]			0	,5		

MOPUR3

Performances

Seismic performance category C1 of rebar

Size			M12	M16	M20
Tension load					
Steel failure					
Characteristic resistance grade 4.6	NRk,s,eq,C2		34	63	98
Partial safety factor	γMs	[-]		2,00	
Characteristic resistance grade 4.8	N _{Rk,s,eq,C2}	[kN]	34	63	98
Partial safety factor	γMs	[-]	40	1,50	100
Characteristic resistance grade 5.8	N _{Rk,s,eq,C2}	[kN]	42	79	123
Partial safety factor	γMs	[-]	67	1,50	196
Characteristic resistance grade 8.8 Partial safety factor	N _{Rk,s,eq,C2}	[kN] [-]	07	126 1,50	190
Characteristic resistance grade 10.9	γMs N=		84	157	245
Partial safety factor	N _{Rk,s,eq,C2} γ _{Ms}	[kN] [-]	04	1,33	240
Characteristic resistance A2-70, A4-70	۲MS NRk,s,eq,C2		59	110	172
Partial safety factor	γMs	[-]		1,87	172
Characteristic resistance A4-80	N _{Rk,s,eq,C2}		67	126	196
Partial safety factor	γMs	[-]	51	1,60	100
Characteristic resistance 1.4529	N _{Rk,s,eq,C2}		59	110	172
Partial safety factor	γMs	[-]	20	1,50	
Characteristic resistance 1.4565	N _{Rk,s,eq,C2}	[kN]	59	110	172
Partial safety factor	γMs	[-]		1,87	··· -
Combined pullout and concrete cone fail		ete C20/25 fc	or a working life	of 50 years and	100 years
Characteristic bond resistance			<u> </u>		-
Temperature T3: -40°C to +70°C	τRk,p,eq,C2	[N/mm ²]	3,2	3,7	4,2
Installation safety factor	γinst	[-]	,	1,0	,-
Shear load				•	
Steel failure without lever arm					
Characteristic resistance grade 4.6			13	18	28
Partial safety factor	V _{Rk,s,eq,C2}	[kN] [-]	13	1,67	20
Characteristic resistance grade 4.8	γMs V _{Rk,s,eq,C2}		13	18	28
Partial safety factor	V Rk,s,eq,C2 γMs	[-]	15	1,25	20
Characteristic resistance grade 5.8	V _{Rk,s,eq,C2}	[kN]	16	22	35
Partial safety factor	V Rk,s,eq,C2 γMs	[-]	10	1,25	
Characteristic resistance grade 8.8	V _{Rk,s,eq,C2}		25	36	56
Partial safety factor	γMs		20	1,25	00
Characteristic resistance grade 10.9	V _{Rk,s,eq,C2}	[kN]	32	45	70
Partial safety factor	Υκκ,ο,οq,ο2 ΥΜs	[-]		1,50	
Characteristic resistance A2-70 , A4-70	VRk,s,eq,C2		22	31	49
Partial safety factor	γMs	[-]		1,56	
Characteristic resistance A4-80	V _{Rk,s,eq,C2}	[kN]	25	36	56
Partial safety factor	γMs	[-]		1,33	
Characteristic resistance 1.4529	V _{Rk,s,eq,C2}	[kN]	22	31	49
Partial safety factor	γMs	[-]		1,25	
Characteristic resistance 1.4565	V _{Rk,s,eq,C2}	[kN]	22	31	49
Partial safety factor	γMs	[-]		1,56	
Characteristic shear load resistance $V_{Rk,s,}$				lowing reduction fa	ctor for hot-dip
		mmercial star		[_]	
Reduction factor for hot-dip galvanized rods	α _{v,h} -dg,c2	[-]	0,46	0,61	0,61
Factor for annular gap	αgap	[-]		0,5	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20 77 58 94	iear load - s	seismic categ	ory C2 of threa	ded rod
		olonastics	aftor fracture		0/_
The anchor shall be used with minim IOPUR3	un rupture	elongation	aller fracture	# A5 equal to 19	/0.
Performances Seismic performance category C2 of	threaded			An	nex C 8