

République Tchèque eota@tzus.cz

Évaluation technique européenne

ETE 13/0751 du 25/10/2021

Organisme d'évaluation technique émetteur de l'ETE: Institut Technique et d'Essais de Construction de Prague

Nom commercial du produit de construction

MO-PS, MO-PS+, MO-PSP, MO-PSP+ MO-PSW, MO-PSW+ MO-PSS, MO-PSS+

Famille de produits à laquelle appartient le produit de construction

Code zone du produit: 33 Ancrage d'adhérence type injection pour le béton non fissuré ayant une durée de vie utile de 50 et/ou 100 ans.

Fabricant

Index Técnicas Expansivas, S.L. P.I. La Portalada II C. Segador 13 26006 Logroño Espagne

Sites de fabrication

Usine 1 d'Index

La présente Évaluation Technique Européenne contient

14 pages dont 10 annexes qui forment l'ensemble intégral de cette évaluation.

La présente Évaluation Technique Européenne est délivrée en conformité avec le règlement (UE) n.º 305/2011, sur la base de DEE 330499-01-0601 Ancrage d'adhérence pour le béton ETE 13/0751 émise le16/05/2018 Les traductions de cette évaluation technique européenne en d'autres langues correspondent pleinement au document publié à l'origine et sont identifiées comme telles.

La reproduction de cette évaluation technique européenne, y compris la transmission par voie électronique doit être intégrale (à l'exception des annexes confidentiels mentionnés cidessus). Cependant, une reproduction partielle peut être faite avec le consentement écrit de l'organisme d'Évaluation Technique qui a émis l'évaluation, l'Institut Technique et d'Essais de Construction de Prague. Toute reproduction partielle doit être désignée comme telle.

1. Description technique du produit

Les produits MO-PS, MO-PS+ et MO-PSP, MO-PSP+ (couleur pierre) et MO-PSW, MO-PSW+ (temps de durcissement rapide) et MO-PSS, MO-PSS+ (temps de durcissement plus long) avec des éléments d'acier, sont des ancrages d'adhérence (type injection).

Les éléments d'acier peuvent être en acier inoxydable ou galvanisé.

L'élément en acier s'introduit dans un trou foré rempli de mortier d'injection. L'élément en acier est ancré par l'adhérence entre le composant métallique, le mortier d'injection et le béton.

L'image et la description du produit se trouvent à l'annexe A.

2. Spécifications de l'usage prévu conformément au DEE applicable

Les performances déterminées dans la Section 3 sont valables seulement si ce système d'ancrage est utilisé en conformité aux spécifications et conditions figurant dans l'Annexe B.

Les dispositions prises dans la présente Évaluation Technique Européenne reposent sur l'hypothèse que la durée de vie estimée de l'ancrage est de 50 años et/ou 100 ans. Les indications données sur la durée de vie ne peuvent en aucun cas être interprétées comme une garantie donnée par le fabricant mais doivent être considérées comme un moyen pour choisir le produit qui convient à la durée de vie économiquement raisonnable attendue des ouvrages.

3. Performances du produit et références aux méthodes utilisées pour son évaluation

3.1 Résistance mécanique et stabilité (BWR 1)

Caractéristique essentielle	Performance
Résistance caractéristique à la traction (charges statiques ou quasi statiques)	Voir annexe C 1
Résistances caractéristiques au cisaillement (charges statiques ou quasi statiques)	Voir annexe C 2
Déplacements sous charges à court et long terme	Voir annexe C 3

3.2 Hygiène, santé et environnement (BWR 3)

Paramètres non déterminés.

3.3 Aspects généraux relatifs à l'aptitude à l'emploi

La durabilité et l'aptitude à l'usage ne sont assurées que si les spécifications pour l'usage prévu sont conformes à l'annexe B1.

4. Évaluation et vérification de la constance des performances (EVCP) système appliqué en référence à sa base légale.

Conformément à la Décision 96/582/CE de la Commission Européenne¹, le système d'évaluation et de vérification de la constance des performances (voir Annexe V du Règlement (EU) No 305/2011) défini dans le tableau suivant est appliqué.

Journal Officiel des Communautés Européennes L 254 du 8/10/1996

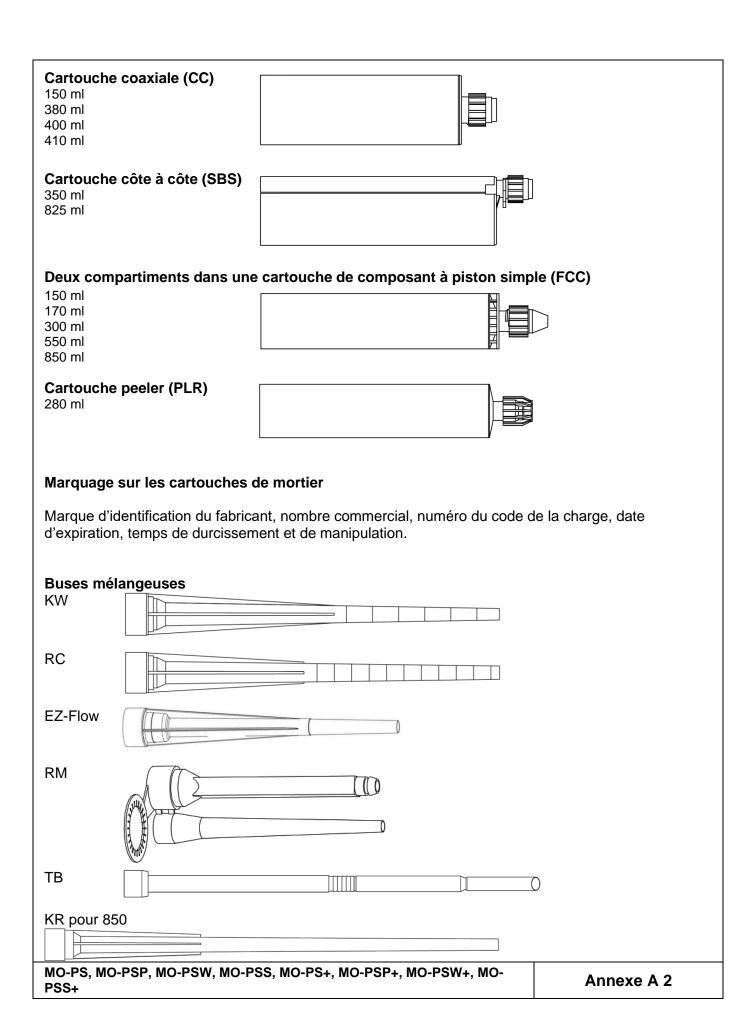
Produit	Usage prévu	Niveau ou classe	Système
Ancrages métalliques pour le béton	Pour la fixation ou renforcement du béton, d'éléments structuraux (contribuant à la stabilité des ouvrages) ou des unités lourdes.	-	1

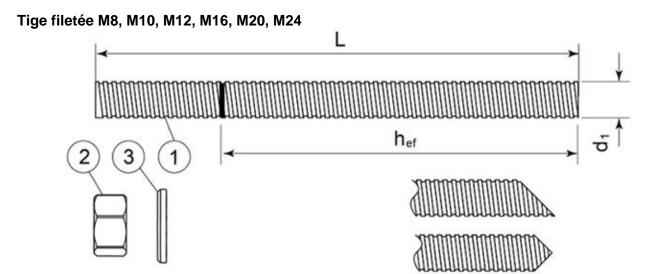
5. Données techniques nécessaires pour la mise en place d'un système EVCP, comme indiqué sur le DEE aplicable.

Le fabricant n'utilisera que les matières premières indiquées dans la documentation technique de la présente Évaluation Technique Européenne. Le système de contrôle de production en usine sera conforme au plan de contrôle faisant partie de la documentation technique de cette Évaluation Technique Européenne. Le plan de contrôle devra s'établir dans le cadre du système de contrôle de production en usine, administré par le fabricant et déposé à l'Institut Technique et d'Essais de Construction de Prague ². Les résultats du contrôle de production en usine seront enregistrés et évalués conformément aux dispositions du plan de contrôle.

Déposé à Prague le 25/10/2021

Par


Ing. Mária Schaan


Cheffe de l'organisme d'Évaluation Technique

ETE 13/0751 de 25/10/2021 – Page 4 de 15 Traduction de l'anglais réalisée par Index Técnicas Expansivas, S. L.

Le plan de contrôle est une partie confidentielle de la documentation de l'évaluation technique européenne qui n'est pas publié avec l'ETE et, ne peut être délivré qu'à l'organisme autorisé responsable du processus de l'EVCP.

Tiges filetées MO-PS, MO-PSP, MO-PSW, MO-PSS, MO-PS+, MO-PSP+, MO-PSW+, MO-PSS+ Annexe A 1 Description du produit Conditions d'installation

Tige filetée standard commerciale avec profondeur d'ancrage indiquée

4	Désignation	Matériau				
Compo- sant						
Acier,	Acier, zingué ≥ 5 µm selon la norme EN ISO 4042 ou Acier, galvanisé à chaud ≥ 40 µm selon la norme EN ISO 1461 et EN ISO 10684 ou Acier, revêtement par diffusion de zinc ≥ 15 µm selon la norme EN 13811					
1	Tige filetée	Acier, EN 10087 ou EN 10263 Classe 5.8, 8.8, 10.9* EN ISO 898-1				
2	Écrou hexagonal EN ISO 4032	Conformément à la tige filetée, EN 20898-2				
3	Rondelle EN ISO 887, EN ISO 7089, EN ISO 7093 ou EN ISO 7094	Conformément à la tige filetée				
Acier	inoxydable					
1	Tige filetée	Matériel: A2-70, A4-70, A4-80, EN ISO 3506				
2	Écrou hexagonal EN ISO 4032	Conformément à la tige filetée				
3	Rondelle EN ISO 887, EN ISO 7089, EN ISO 7093 ou EN ISO 7094	Conformément à la tige filetée				
Acier	haute résistance à la corrosion					
1	Tige filetée	Matériel: 1.4529, 1.4565, EN 10088-1				
2	Écrou hexagonal EN ISO 4032	Conformément à la tige filetée				
3	Rondelle EN ISO 887, EN ISO 7089, EN ISO 7093 ou EN ISO 7094	Conformément à la tige filetée				

^{*} Les tiges galvanisées haute résistance sont sensibles à la fragilité induite par l'hydrogène

MO-PS, MO-PSP, MO-PSW, MO-PSS, MO-PS+, MO-PSP+, MO-PSW+, MO-PSS+	
Description du produit Tige filetée et matériel	Annexe A 3

Spécifications sur l'usage prévu

Ancrages soumis à :

• Charge statique et quasi statique.

Matériaux de support

- Béton non fissuré.
- Béton armé ou de poids normal et de classe de résistance minimale C20/25 et maximale C50/60 conformément au règlement EN 206-1:2000-12.

Plage de température:

• Entre -40 °C et +80 °C (température maximale à court terme: +80 °C et température maximale à long terme: +50 °C)

Conditions d'utilisation (conditions ambiantes)

- (X1) Structures soumises à des conditions internes sèches (acier zingué, acier inoxydable, acier haute résistance à la corrosion).
- (X2) Structures soumises à exposition atmosphérique externe (ambiances industrielles et marines comprises) et à des conditions internes d'humidité permanente sans présence d'autres conditions particulièrement agressives (acier inoxydable A4, acier haute résistance à la corrosion).
- (X3) Structures soumises à exposition atmosphérique externe et à des conditions internes d'humidité permanente sans présence d'autres conditions particulièrement agressives (acier haute résistance à la corrosion).

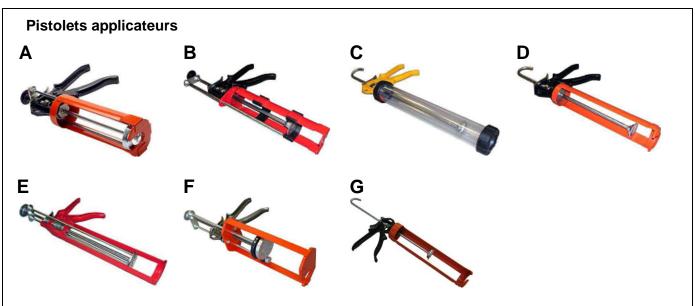
Remarque: Des conditions particulièrement agressives peuvent être, par exemple, l'immersion en permanence ou en alternance dans de l'eau de mer ou l'exposition aux embruns, ou à des ambiances de chlorure de piscines couvertes ou encore à des ambiances de pollution chimique extrême (par exemple : dans des sites de désulfuration ou des tunnels de route où sont utilisés des substances pour le dégèle).

Conditions du béton:

- I1 installation dans béton sec ou humide (saturé d'eau) ou dans des trous inondés.
- I2 installation avec présence d'eau (sauf eau de mer) et utilisation dans le béton sec ou humide

Conception

- Les ancrages sont conçus conformément au règlement EN 1992-4 sous la responsabilité d'un ingénieur expérimenté en matière d'ancrages et d'ouvrages pour béton.
- Des notes de calcul et des plans vérifiables sont élaborés en tenant compte des charges à ancrer. La position de l'ancrage est indiquée sur les plans de conception.

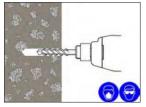

Installation

- Utiliser une perceuse avec percuteur pour forer le trou.
- L'installation des ancrages doit être réalisée par le personnel dûment qualifié et sous la surveillance de la personne responsable des aspects techniques de l'ouvrage.

Direction de l'installation:

• D3 – installation vers le bas et horizontale et vers le haut (c'est à dire, par-dessus)

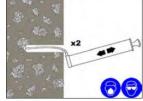
MO-PS, MO-PSP, MO-PSW, MO-PSS, MO-PS+, MO-PSP+, MO-PSW+, MO-PSS+	
Usage prévu Spécifications	Annexe B 1

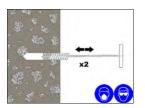

Pistolet applicateur	А	В	С	D	E	F	G
Cartouche	Coaxiale 380 ml 400 ml 410 ml	Côte-à-côte 350 ml	Capsule 150 ml 300 ml 550 ml	Capsule 150 ml 300 ml Peeler 280 ml	Coaxiale 150 ml	Côte-à-côte 825 ml	Capsule 850 ml

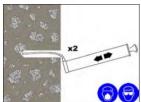
Écouvillon de nettoyage

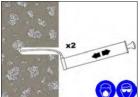
MO-PS, MO-PSP, MO-PSW, MO-PSS, MO-PS+, MO-PSP+, MO-PSW+, MO-PSS	
Usage prévu	Annexe B 2
Pistolets applicateurs	Amioko B Z
Écouvillon de nettoyage	

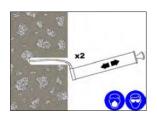
Procédé d'installation

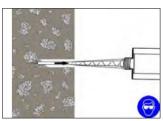

1. Percer le trou au diamètre et à la profondeur appropriés. Pour cela, utiliser une perceuse à percussion ou un perforateur, selon le substrat.




Si nécessaire, couper le tube de rallonge à la profondeur du trou et le fixer par une pression sur l'extrémité de la canule, et (pour des goujons filetés de 16 mm ou plus) incorporer le bouchon d'injection approprié sur l'autre extrémité. Placer le tube de rallonge et le bouchon d'injection.


2. Bien nettoyer le trou foré comme indiqué ci-après en utilisant un écouvillon avec les accessoires nécessaires et une pompe soufflante.


Soufflage de nettoyage x2. Brossage de nettoyage x2. Soufflage de nettoyage x2. Brossage de nettoyage x2. Soufflage de nettoyage x2.

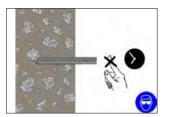


Si de l'eau venait à s'introduire dans le trou après le nettoyage initial, il est conseillé de l'éliminer avant d'injecter la résine.

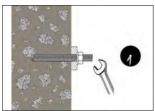
- 3. Choisir la canule statique appropriée pour l'installation, ouvrir la cartouche/tube laminé et visser la canule à la cartouche. Introduire la cartouche dans le pistolet applicateur approprié.
- 4. Extruder hors du trou les premières pressions pour obtenir une résine de couleur homogène sans taches.

Insérer la cánula (bouchon d'injection/tube de rallonge si nécessaire) jusqu'au fond du trou. Commencer à injecter la résine tout en retirant lentement la canule du trou pour qu'il ne se forme aucune bulle d'air

Remplir environ 1/2 ou 3/4 du trou et retirer complètement la canule.


7. Introduire la tige filetée exempt d'huiles ou autres résidus jusqu'au fond du trou en appliquant un mouvement rotatif jusqu'à ce qu'il soit correctement enrobé. Ajustez-le jusqu'à sa position correcte sans excéder le temps de manipulation permis.

L'excès de résine sortira du trou de façon uniforme autour du composant métallique ce qui indiquera que le trou est comblé.


Cet excès de résine doit être retiré avant qu'elle ne durcisse.

9. Laisser durcir le mortier. Ne pas toucher à l'ancrage pendant le temps de prise/durcissement qui dépend des conditions du substrat et de la température ambiante.

10 Installer l'élément à fixer et serrer l'écrou au couple de serrage requis.

> pas serrer excessivement.

MO-PS, MO-PSP, MO-PSW, MO-PSS, MO-PS+, MO-PSP+, MO-PSW+, MO-PSS

Usage prévu

Instructions d'installation

Annexe B 3

Tableau B1: Paramètres d'installation

Dimensions			M8	M10	M12	M16	M20	M24
Diamètre nominal du trou foré	$ \emptyset d_0 $	[mm]	10	12	14	18	22	26
Diamètre de l'écouvillon de nettoyage	d_{b}	[mm]	14	14	20	20	29	29
Couple de serrage	máx. T _{fix}	[Nm]	10	20	40	80	150	200
Profondeur du trou foré pour h _{ef,min}	$h_0 = h_{ef}$	[mm]	64	80	96	128	160	192
Profondeur du trou foré pour h _{ef,max}	$h_0 = h_{\text{ef}}$	[mm]	96	120	144	192	240	288
Distance minimale au bord	C _{min}	[mm]	35	40	50	65	80	96
Distance minimale entre axes	S _{min}	[mm]	35	40	50	65	80	96
Épaisseur minimale du béton	h_{min}	[mm]	h _{ef} -	+ 30 mn	า ≥ 100	mm	h _{ef} +	· 2d ₀

Tableau B2.1: Temps minimal de durcissement MO-PS, MO-PSP, MO-PSP, MO-PSP+

Température de la cartouche [°C]	Temps de travail [min]	Température du support [°C]	Temps de prise [min]
min +5	18	min +5	145
+5 - +10	10	+5 - +10	143
+10 - +20	6	+10 - +20	85
+20 - +25	5	+20 - +25	50
+25 - +30	1	+25 - +30	40
+30	4	+30	35

Tableau B2.2: Temps minimal de durcissement MO-PSW, MO-PSW+

Température de la cartouche [°C]	Temps de travail [min]	Température du support [°C]	Temps de prise [min]
min +5	5	0 - +5	125
+5 - +10	3,5	+5 - +10	60
+10 - +20	2	+10 - +20	40
+20 - +25	1,5	+20 - +25	20
+25 - +30	1	+25 - +30	15
+30	I	+30	10

Tableau B2.3: Temps minimal de durcissement MO-PSS. MO-PSS+

Température de la cartouche [°C]	Temps de travail [min]	Température du support [°C]	Temps de prise [min]
min +10	30	min +10	5 horas
+10 - +20	15	+10 - +20	3 110148
+20 - +25	10	+20 - +25	145
+25 - +30	7,5	+25 - +30	85
+30 - +35	5	+30 - +35	50
+35 - +40	3,5	+35 - +40	40
+40 - +45	2.5	+40 - +45	35
+45	2,5	+45	12

Le temps de travail correspond au temps standard de gélification selon la température maximale de la plage indiquée. Le temps de prise s'établit en fonction de la température minimale de la plage indiquée

MO-PS, MO-PSP, MO-PSW, MO-PSS, MO-PS+, MO-PSP+, MO-PSW+, MO-PSS+	
Usage prévu	Annexe B 4
Paramètres d'installation	
Temps de durcissement	

Tableau C1: Méthode de conception EN 1992-4 Valeurs caractéristiques de la résistance à la traction

Rupture de l'acier – Résistance carac	ctéristiqu	ıe						
Dimensions				M10	M12	M16	M20	M24
Acier classe 5.8	$N_{Rk,s}$	[kN]	18	29	42	79	123	177
Coefficient partiel de sécurité	γMs	[-]			1	,5		
Acier classe 8.8	$N_{Rk,s}$	[kN]	29	46	67	126	196	282
Coefficient partiel de sécurité	γMs	[-]			1	,5		
Acier classe 10.9	$N_{Rk,s}$	[kN]	37	58	84	157	245	353
Coefficient partiel de sécurité	γMs	[-]	1,4					
Acier inoxydable classe A2-70, A4-70	$N_{Rk,s}$	[kN]	26	41	59	110	172	247
Coefficient partiel de sécurité	γMs	[-]			1,	,9		
Acier inoxydable classe A4-80	$N_{Rk,s}$	[kN]	29	46	67	126	196	282
Coefficient partiel de sécurité	γMs	[-]			1,	,6		
Acier inoxydable classe 1.4529	$N_{Rk,s}$	[kN]	26	41	59	110	172	247
Coefficient partiel de sécurité	γMs	[-]	1,5					
Acier inoxydable classe 1.4565	$N_{Rk,s}$	[kN]	26	41	59	110	172	247
Coefficient partiel de sécurité	γMs	[-]			1	,9		

Rupture combinée par exti	raction et côn	e de k	éton dar	ns béto	on non	fissur	é C20/	/25	
Dimensions				M8	M10	M12	M16	M20	M24
Résistance caractéristique de 50 et 100 ans	d'adhérence	sur b	éton non	fissu	ré avec	une c	lurée d	de vie	utile
Béton sec/humide et trous	inondés	τ _{Rk,ucr}	[N/mm ²]	8,5	8	9	9	8	7,5
Coefficient de sécurité pour	l'installation	γinst	[-]	1,2					
Facteur d'influence d'une charg pour une durée de vie utile de 5		ψ^0_{sus}	[-]	0,78					
Facteur du béton	C30/37 C35/45 C50/60	Ψc	[-]			1,	12 19 30		

Rupture par cône de béton			
Facteur de la rupture du cône de béton	$k_{\text{ucr},N}$	[-]	11
Distance au bord	C _{cr,N}	[mm]	1,5h _{ef}

Rupture par fendage								
Dimensions			M8	M10	M12	M16	M20	M24
Distance au bord	C _{cr,sp}	[mm]		2,0h _{ef}			1,5h _{ef}	
Distance entre axes	S _{cr,sp}	[mm]		4,0h _{ef}			3,0h _{ef}	

MO-PS, MO-PSP, MO-PSW, MO-PSS, MO-PS+, MO-PSP+, MO-PSW+, MO-PSS	
Performances Résistance caractéristique aux charges de traction	Annexe C 1

Tableau C2: Méthode de conception EN 1992-4 Valeurs caractéristiques de la résistance à la charge de cisaillement

Dimensions			M8	M10	M12	M16	M20	M24	
Acier classe 5.8	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	
Coefficient partiel de sécurité	γMs	[-]			1,	25	•		
Acier classe 8.8	$V_{Rk,s}$	[kN]	15	23	34	63	98	141	
Coefficient partiel de sécurité	γMs	[-]			1,	25			
Acier classe 10.9	$V_{Rk,s}$	[kN]	18	29	42	79	123	177	
Coefficient partiel de sécurité	γMs	[-]			1	1,5			
Acier inoxydable classe A2-70, A4-70	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	
Coefficient partiel de sécurité	γMs	[-]			1,	1,56			
Acier inoxydable classe A4-80	$V_{Rk,s}$	[kN]	15	23	34	63	98	141	
Coefficient partiel de sécurité	γMs	[-]			1,	33			
Acier inoxydable classe 1.4529	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	
Coefficient partiel de sécurité	γMs	[-]			1,	25			
Acier inoxydable classe 1.4565	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	
Coefficient partiel de sécurité	γMs	[-]			1,	56			
Résistance caractéristique d'un groupe	d'ancrages	·			·	·	·		

Facteur de ductilité	k_7 = 1,0 pour acier avec allongement à la rupture $A_5 > 8 \%$
Duntura da	l'acier avec bras de levier

Rupture de l'acier avec bras de levier								
Dimensions			M8	M10	M12	M16	M20	M24
Acier classe 5.8	$M^{o}_{Rk,s}$	[N.m]	19	37	66	166	325	561
Coefficient partiel de sécurité	γMs	[-]			1,	25		
Acier classe 8.8	$M^{o}_{Rk,s}$	[N.m]	30	60	105	266	519	898
Coefficient partiel de sécurité	γMs	[-]			1,	25		
Acier classe 10.9	$M^{o}_{Rk,s}$	[N.m]	37	75	131	333	649	1123
Coefficient partiel de sécurité	γMs	[-]	1,50					
Acier inoxydable classe A2-70, A4-70	$M^{o}_{Rk,s}$	[N.m]	26	52	92	233	454	786
Coefficient partiel de sécurité	γMs	[-]		1,56				
Acier inoxydable classe A4-80	$M^{o}_{Rk,s}$	[N.m]	30 60 105 266 519 89				898	
Coefficient partiel de sécurité	γMs	[-]			1,	33		
Acier inoxydable classe 1.4529	$M^{o}_{Rk,s}$	[N.m]	26	52	92	233	454	786
Coefficient partiel de sécurité	γMs	[-]			1,	25		
Acier inoxydable classe 1.4565	$M^{o}_{Rk,s}$	[N.m]	26	52	92	233	454	786
Coefficient partiel de sécurité	γMs	[-]	1,56					
Rupture par écaillage du béton	· · · · · · · · · · · · · · · · · · ·							
Facteur de résistance à la rupture par écaillage	k ₈	[-]				2		

Rupture du bord du béton							
Dimensions		M8	M10	M12	M16	M20	M24
Diamètre extérieur de l'ancrage d _{nom}	[mm]	8	10	12	16	20	24
Longueur effective de l'ancrage \$\ell_f\$	[mm]	min (h _{ef} , 8 d _{nom})					

MO-PS, MO-PSP, MO-PSW, MO-PSS, MO-PS+, MO-PSP+, MO-PSW+, MO-PSS	
Performances Résistance caractéristique aux charges de cisaillement	Annexe C 2

Tableau C3: Déplacement avec charge de traction et cisaillement

	nensions de ncrage		M10	M12	M16	M20	M24				
Charge	e de tractior	1									
δ_{N0}	[mm/kN]	0,03	0,03	0,03	0,02	0,02	0,02				
$\delta_{N\infty}$	[mm/kN]	0,06	0,05	0,03	0,02	0,02	0,02				
Charge	Charge de cisaillement										
δ_{V0}	[mm/kN]	0,02	0,01	0,02	0,02	0,02	0,03				
δ_{V^∞}	[mm/kN]	0,04	0,02	0,03	0,03	0,03	0,05				

MO-PS, MO-PSP, MO-PSW, MO-PSS, MO-PS+, MO-PSP+, MO-PSW+, MO-PSS

Performances
Déplacement

Annexe C 3