

for Construction Prague Prosecká 811/76a 190 00 Prague Czech Republic eota@tzus.cz

European Technical Assessment

ETA 24/1141 of 22/11/2024

Technical Assessment Body issuing the ETA: Technical and Test Institute for Construction Prague					
Trade name of the construction product	MO-PSU				
Product family to which the construction product belongs	Product area code: 33 Injection anchors for use in masonry				
Manufacturer	Index Técnicas Expansivas, S.L. P.I. La Portalada II C/ Segador 13 26006 Logroño (La Rioja) Spain https://www.indexfix.com/				
Manufacturing plant(s)	Index Plant 1				
This European Technical Assessment contains	13 pages including 10 Annexes which form an integral part of this assessment.				
This European Technical Assessment is issued in accordance with regulation (EU) No 305/2011, on the basis of	EAD 330076-01-0604 Metal injection anchors for use in masonry				

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

1. Technical description of the product

The MO-PSU for masonry is a bonded anchor consisting of a cartridge with injection mortar, a plastic sieve sleeve and an anchor rod with a hexagon nut and a washer. The steel elements are made of galvanized steel or stainless steel.

The sieve sleeve is pushed into a drilled hole and filled with injection mortar before the anchor rod is placed in the sieve sleeve. The installation of the anchor rod in solid masonry is done without a sieve sleeve. The steel element is anchored via the bond between metal part, injection mortar and masonry.

The illustration and the description of the product are given in Annex A.

2. Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Reduction factor for job site tests (β – factor)	See Annex C 1
Characteristic resistance	See Annex C 1
Edge distances and spacing	See Annex B 5
Displacements	See Annex C 1
Durability	See Annex A 3

3.2 Safety in case of fire (BWR 2)

Essential characteris	tic Performance
Reaction to fire	Anchorages satisfy requirements for Class A1

3.3 Hygiene, health and environment (BWR 3)

No performance determined.

3.4 General aspects relating to fitness for use

Durability and serviceability are only ensured if the specifications of intended use according to Annex B 1 are kept.

4. Assessment and verification of constancy of performance (AVCP) system applied with reference to its legal base

According to the Decision 97/177/EC of the European Commission¹, the system of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) given in the following table applies.

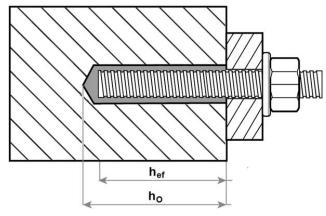
Product	Intended use	Level or class	System
Injection anchors for use in masonry	For fixing and/or supporting to masonry, structural elements (which contributes to the stability of the works) or heavy units	-	1

¹ Official Journal of the European Communities L 073 of 14.03.1997

5. Technical details necessary for the implementation of the AVCP system, as provided in the applicable EAD

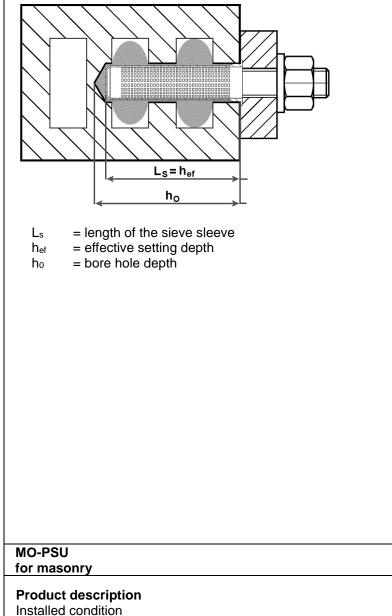
The factory production control shall be in accordance with the control plan which is a part of the technical documentation of this European Technical Assessment. The control plan is laid down in the context of the factory production control system operated by the manufacturer and deposited at Technický a zkušební ústav stavební Praha, s.p.² The results of factory production control shall be recorded and evaluated in accordance with the provisions of the control plan.

Issued in Prague on 22.11.2024


By

Ing. Jiří Studnička, Ph.D. Head of the Technical Assessment Body

² The control plan is a confidential part of the documentation of the European Technical Assessment, but not published together with the ETA and only handed over to the approved body involved in the procedure of AVCP.

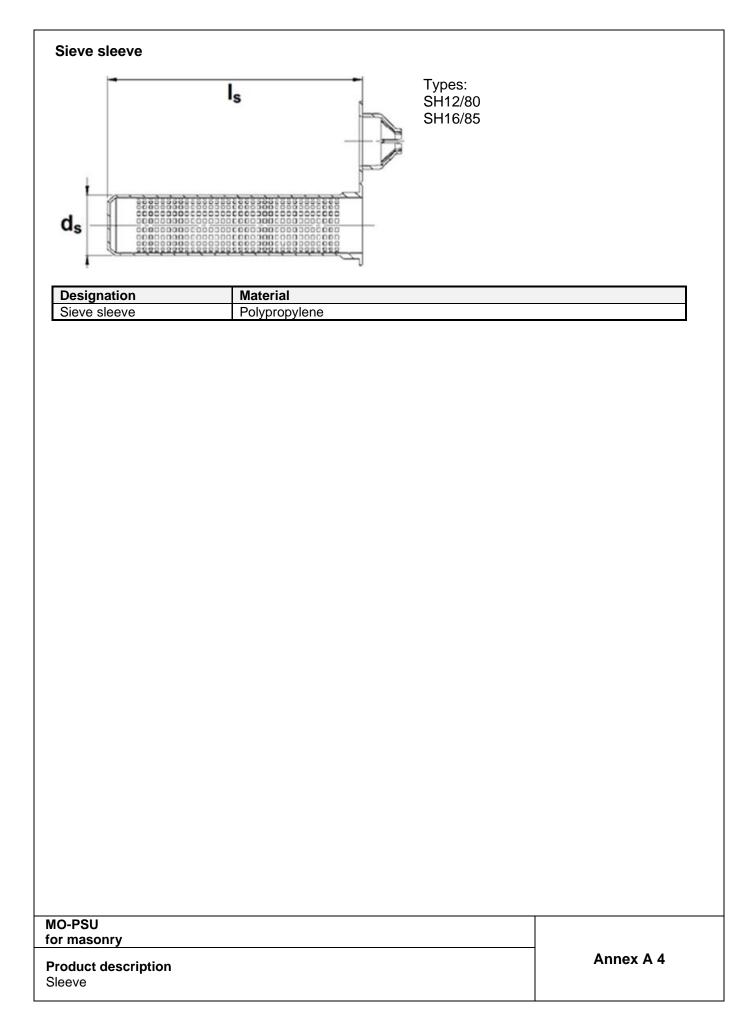

Installation in solid brick masonry

Installation of anchor rod without sieve sleeve

Installation in hollow or perforated brick masonry

Installation of anchor rod with sieve sleeve

Annex A 1


-			
Coaxial ca MO-PSU	artridge (CC)	150 ml 380 ml 400 ml 410 ml	
Side by si MO-PSU	de cartridge (SBS)	350 ml 360 ml 825 ml	
Two part f MO-PSU	oil in a single piston componer	nt cartridge (FCC) 150 ml 170 ml 300 ml 550 ml 850 ml	
Identifying	f the mortar cartridges mark of the producer, Trade nam processing time	e, Charge code number, Storag	je life,
Mixing no KW	zzle	=	
EZ-Flow		0	
MO-PSU			
for masonr			Annex A 2
Product de Injection sys	scription stem		

Threaded rod M6, M8, M10, M12

Standard commercial threaded rod with marked embedment depth

Part	Designation	Material	
	, zinc plated \geq 5 µm acc. to EN IS		
	, Hot-dip galvanized ≥ 40 μm acc. , zinc diffusion coating ≥ 15 μm a)684 or
<u>اععاد</u> 1	Anchor rod	Steel, EN 10087 or EN 10263	3
		Property class 5.8, 8.8, 10.9 ¹	⁾ EN ISO 898-1
2	Hexagon nut EN ISO 4032	According to threaded rod, E	N 20898-2
3	Washer EN ISO 887, EN ISO 7089, EN ISO 7093 or EN ISO 7094	According to threaded rod	
Stain	less steel		
1	Anchor rod	Material: A2-70, A4-70, A4-80	0, EN ISO 3506
2	Hexagon nut EN ISO 4032	According to threaded rod	
3	Washer EN ISO 887, EN ISO 7089, EN ISO 7093 or EN ISO 7094	According to threaded rod	
High	corrosion resistant steel		
1	Anchor rod	Material: 1.4529, 1.4565, EN	10088-1
2	Hexagon nut EN ISO 4032	According to threaded rod	
3	Washer EN ISO 887, EN ISO 7089, EN ISO 7093 or EN ISO 7094	According to threaded rod	
) Galva	anized rod of high strength are sens	sitive to hydrogen induced brittle	failure
D-PSU maso	nry		
oduct	description d rod and materials		Annex A 3

Specifications of intended use

Anchorages subject to:

• Static and quasi-static loads

Base materials

- Solid brick masonry (Use category b), according to Annex B2.
- Hollow brick masonry (Use category c), according to Annex B2.
- Mortar strength class of the masonry M2,5 at minimum according to EN 998-2:2010.
- For other bricks in solid masonry, hollow or perforated masonry characteristic resistance of the anchorages may be determined by job site tests according to EOTA Technical Report TR 053 and under consideration of the β-factor to Annex C1, Table C4 or Annex C 2, Table C8.

Note: The characteristic resistances for solid bricks are also valid for larger brick sizes and larger compressive strength of the masonry unit.

Temperature range:

- T_a: -40°C to +40°C (max. short. term temperature +40°C and max. long term temperature +24°C)
- T_b: -40°C to +80°C (max. short. term temperature +80°C and max. long term temperature +50°C)

Use conditions (Environmental conditions)

- Structures subject to dry, internal conditions (all materials)
- For all other conditions according to EN 1993-1-4 corresponding to corrosion resistance class:
 - Stainless steel A2 according to Annex A 4, Table A1: CRC II
 - Stainless steel A4 according to Annex A 4, Table A1: CRC III
 - High corrosion resistance steel HCR according to Annex A 4, Table A1: CRC V

Use categories in respect of installation and use:

- Category d/d Installation and use in structures subject to dry, internal conditions
- Category w/d Installation in dry or wet substrate and use in structures subject to dry, internal conditions
- Category w/w Installation and use in structures subject to dry or wet environmental conditions

Design:

- Verifiable calculation notes and drawings are prepared taking account the relevant masonry in the region of the anchorage, the loads to be transmitted and their transmission to the supports of the structure. The position of the anchor is indicated on the design drawings.
- The anchorage are designed in accordance with the EOTA Technical Report TR 054, Design method A under the responsibility of an engineer experienced in anchorages and masonry work.

Installation:

- Dry or wet structures
- Anchor Installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

MO-PSU for masonry	
Intended use Specifications	Annex B 1

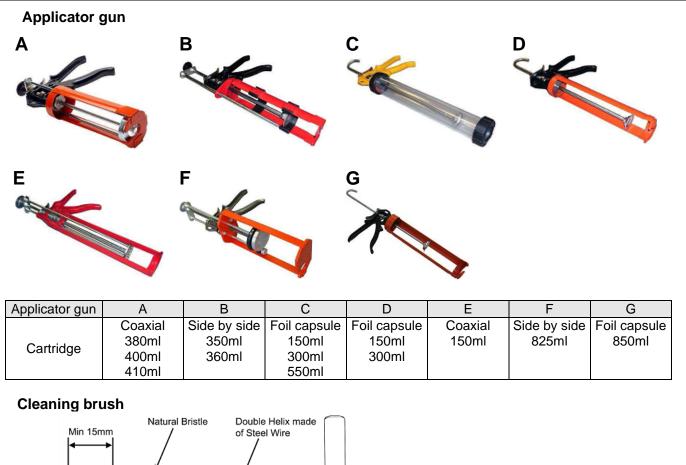
Table B1: Types and dimensions of block and bricks

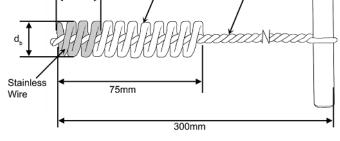
Brick N° 1

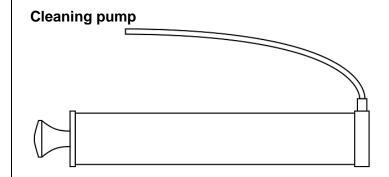
Perforated clay brick PERFORADO 10 according to EN 771-1 length/width/height = 245 mm/110 mm/100 mm f_b \geq 15 N/mm² / ρ \geq 2,05 kg/dm³

Brick N° 2

Hollow clay brick Porotherm P+W according to EN 771-1 length/width/height = 373 mm/250 mm/238 mm f_b \geq 12 N/mm² / $\rho \geq$ 0,9 kg/dm³


Brick N° 3




Solid clay brick Mz-NF according to EN 771-1 length/width/height = 240 mm / 115 mm / 71 mm $f_b \ge 20 \ N/mm^2 \ / \ \rho \ge 1,9 \ kg/dm^3$

MO-PSU for masonry

Intended use Brick types and properties Annex B 2

MO-PSU	
for masonry	
Intended use	Annex B 3
Applicator guns	
Cleaning brush, Cleaning pump	

Installation	instructions		
	1. Drill the hole to the correct diameter and depth using a rotary percussive machine.	2×	2. Use the cleaning pump to clean the hole.
2×	3. Use the cleaning brush to clean the hole. Diameter of cleaning brush according to Table B2 or B4.	2×	4. Use the cleaning pump to clean the hole.
2×	5. Use the cleaning brush to clean the hole. Diameter of cleaning brush according to Table B2 or B4.	2×	6. Use the cleaning pump to clean the hole.
	 7. If use in hollow or perforated brick masonry: Plug the centering cap and insert the correct perforated sleeve flush with the surface of the base material. 		8. Once the hole is prepared remove the screw cap from the cartridge.
	9 . Attach the mixer nozzle and place the cartridge in the applicator gun.	21 21	10. Dispense the first part to waste, until an even colour is achieved.
A P	11. Remove any free water from the hole.		12. Insert the nozzle to the far end of the hole (using extension tubing if necessary) and inject the resin, withdrawing the nozzle/tube as the hole fills.
	13. If use in hollow or perforated brick masonry: Insert mixer nozzle to the end of the perforated sleeve and completely fill the sleeve with resin. Withdraw the mixer nozzle as the sleeve fills.		14. Immediately insert the fixing (steel element) slowly and with a slight twisting motion. Remove excess resin from around the mouth of the hole.
	15. Leave the fixing undisturbed until the cure time (see Table B9) has elapsed.		16. Attach the fixture and tighten the nut. Maximum installation torque moment according to Table B3, B5 or B7.
MO-PSU for masonry Intended use Installation inst	ructions		Annex B 4

Table B2: Installation parameters in hollow masonry with sleeve							
Anchor type				Anch	nor rod with s	leeve	
Size			M6	M8	M8	M10	M12
Sieve sleeve	ls	[mm]	80	80	85	85	85
Sieve sieeve	ds	[mm]	12	12	16	16	16
Nominal drill hole diameter	d_0	[mm]	12	12	16	16	16
Diameter of cleaning brush	db	[mm]	14 ^{±1}	14 ^{±1}	20 ^{±1}	20 ^{±1}	20 ^{±1}
Depth of the drill hole	ho	[mm]	8	35	90		
Effective anchorage depth	h _{ef}	[mm]	8	30		85	
Diameter of clearance hole in the fixture	d _f ≤	[mm]	7	9	9	12	14
Torque moment	T _{inst} ≤	[Nm]			2		

Table B3: Edge distances and spacing in solid or hollow masonry with sleeve

	Anchor rod								
	M6, M	8 with sleeve SH	M8, M10, M12 with sleeve SH16/85						
Base material ¹⁾	Ccr = Cmin	Scr II = Smin II	Scr⊥ = Smin⊥	Ccr = Cmin	Scr II = Smin II	Scr⊥ = Smin⊥			
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]			
Brick N° 1	100	245	110	-	-	-			
Brick N° 2	-	-	-	100	373	238			

¹⁾ Brick N° according to Annex B 2

Table B4: Installation parameters in solid masonry without sleeve

Anchor type			Anchor rod without sleeve				
Size			M6	M8	M10	M12	
Nominal drill hole diameter	do	[mm]	8	10	12	14	
Diameter of cleaning brush	db	[mm]	9 ^{±1}	14 ^{±1}	14 ^{±1}	14 ^{±1}	
Depth of the drill hole	ho	[mm]	80		90		
Effective anchorage depth	h _{ef}	[mm]	80	90			
Diameter of clearance hole in the fixture	d _f ≤	[mm]	7	9	12	14	
Torque moment	T _{inst} ≤	[Nm]			2		

Table B5: Edge distances and spacing in solid masonry without sleeve

Anchor rod									
	M6		M8, M10, M12						
Ccr = Cmin	Scr II = Smin II	Scr⊥ = Smin⊥	Ccr = Cmin	Scr II = Smin II	S _{cr} ⊥ = Smin⊥				
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]				
120	240	240	135	270	270				
		Cor = Cmin Sor = Cmin Sor = Smin =	9M Car Car Sart = Sarin II (mul) (mul)	Image: Mark Mark Mark Mark Mark Mark Mark Mark	M0 M1 B B				

¹⁾ Brick N° according to Annex B 2

Table B6: Minimum curing time

Resin cartridge temperature	T Work	Base material Temperature	T Load	
min +5°C	18 Minutes	min +5°C	160 Minutes	
+5°C to +10°C	10 Minutes	+5°C to +10°C	100 minutes	
+10°C to +20°C	6 Minutes	+10°C to +20°C	90 Minutes	
+20°C to +25°C	5 Minutes	+20°C to +25°C	60 Minutes	
+25°C to +30°C	4 Minutes	+25°C to +30°C	50 Minutes	
+30°C	4 minutes	+30°C	40 Minutes	

T Work is typical gel time at highest base material temperature in the range.

T Load is minimum set time required until load can be applied at the lowest temperature in the range.

MO-PSU

for masonry

Intended use						
Installation parameters						
Working and curing time						

Annex B 5

Paga	Anchor rods with sleeve N _{Rk} = V _{Rk} [kN] ¹⁾									Anchor rods without sleeve N _{Rk} = V _{Rk} [kN] ¹⁾								
Base material	Use conditions d/d				Use conditions w/d; w/w			Use conditions d/d				Use conditions w/w; w/d						
	M6	M8	M8	M10	M12	M6	M8	M8	M10	M12	M6	M8	M10	M12	M6	M8	M10	M12
Temperature range Ta: -40°C to +40°C																		
Sleeve	12/	80		16/85		12/80 16/85												
Brick N° 1	1,5	1,5		-		1,5	1,5		-					-				
Brick N° 2	-		1,2	1,5	1,5	-		0,9	1,2	1,2								
Brick N° 3			-			-		1,5	1,5	2,0	2,5	0,9	1,2	2,0	2,0			
Temperatur	e rang	ge T _b :	-40°	C to +	-80°C													
Sleeve	12/	80		16/85		12/	/80		16/85	,								
Brick N° 1	1,2	1,2		-		1,2	1,2		-									
Brick N° 2	-		0,9	1,2	1,2	-	-	0,9	1,2	1,2								
Brick N° 3			-					-			1,2	1.2	1.5	2.0	0.9	0,9	1,5	1,5

¹⁾ For design according TR 054: N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,s}; N_{Rk,pb} according to TR 054 For V_{Rk,s} see Annex C1, Table C2; Calculation of V_{Rk,pb} and V_{Rk,c} according to TR 054

Table C2: Characteristic resistance under shear loading – steel failure

Size			M6	M8	M10	M12	Partial safety factor
Characteristic shear resistance							γMs
Steel grade 5.8	V _{Rk,s}	[kN]	5	9	15	21	1,25
Steel grade 8.8	V _{Rk,s}	[kN]	8	15	23	34	1,25
Steel grade 10.9	V _{Rk,s}	[kN]	10	18	29	42	1,50
Stainless steel grade A2-70, A4-70	V _{Rk,s}	[kN]	7	13	20	30	1,56
Stainless steel grade A4-80	V _{Rk,s}	[kN]	8	15	23	34	1,33
Stainless steel grade 1.4529 strength class 70	V _{Rk,s}	[kN]	7	13	20	30	1,25
Stainless steel grade 1.4565 strength class 70	V _{Rk,s}	[kN]	7	13	20	30	1,56
Characteristic bending moment							
Steel grade 5.8	$M_{Rk,s}$	[N.m]	8	19	37	66	1,25
Steel grade 8.8	M _{Rk,s}	[N.m]	12	30	60	105	1,25
Steel grade 10.9	$M_{Rk,s}$	[N.m]	15	37	75	131	1,50
Stainless steel grade A2-70, A4-70	M _{Rk,s}	[N.m]	11	26	52	92	1,56
Stainless steel grade A4-80	M _{Rk,s}	[N.m]	12	30	60	105	1,33
Stainless steel grade 1.4529 strength class 70	M _{Rk,s}	[N.m]	11	26	52	92	1,25
Stainless steel grade 1.4565 strength class 70	M _{Rk,s}	[N.m]	11	26	52	92	1,56

Table C3: Displacements under tension and shear load

Base material	F [kN]	δ _№ [mm]	δ _{∾∞} [mm]	δ _{ν₀} [mm]	δ _{ν∞} [mm]	
Brick N° 1	N _{Rk} / (1,4 · γм)	0,5	1,0	1,0 ¹⁾	1,5 ¹⁾	
Brick N° 2	N _{Rk} / (1,4 · γ _M)	0,4	0,8	0,6 ¹⁾	0,9 ¹⁾	
Brick N° 3	N _{Rk} / (1,4 · γ _M)	0,2	0,3	0,7 ¹⁾	1,1 ¹⁾	

¹⁾ the hole gap between bolt and fixture shall be considered additionally

Table C4: β - factors for job site tests according to TR 053

Brick N°	N° 1	N° 2	N° 3
β - factor – Use conditions d/d	0,71	0,71	0,51
β - factor – Use conditions w/d; w/w	0,71	0,64	0,37

MO-PSU

for masonry

Performances

Characteristic resistance, displacement β -factors for job site testing under tension load

Annex C 1