

ITEM	CÓDE	SIZE	PICTURE	COMPONENT	MATERIAL
1	TDE	1/4"- 3/4"		Hexagonal screw anchor	Carbon steel, Atlantis coating
2	TLE	1/4" - 3/4"	aturutututututut	Hexagonal screw anchor	Carbon steel, zinc plated coating \geq 0,0002 in

TDE/TLE

Denomination: TDE screw anchor

Reference: FT TDE-en

Date: 16/01/2024 Revision: 14

Codes: TDE, TLE

Page: 2 of 12

2. INSTALLATION DETAILS IN CONCRETE

Devementer	Cumbal	Unite	Nominal anchor diameter									
Parameter	Symbol	Units	1/-	4"	3/	8"	1	/2"	5/	8"	3/	4"
Drill bit diameter	d ₀	in (mm)	1/4 (6,4)	1/4 (6,4)	3/8 (9.5)	3/8 (9.5)	1/2 (12.7)	1/2 (12.7)	5/8 (15.9)	5/8 (15.9)	3/4 (19.1)	3/4 (19.1)
Nominal embedment depth ¹	h _{nom}	in (mm)	1 5/8 (41)	2 1/2 (64)	2 1/2 (64)	3 1/4 (83)	3 (76)	4 1/4 (108)	3 1/4 (83)	5 (127)	4 (102)	6 1/4 (159)
Effective embedment depth	h _{ef}	in (mm)	1,23 (31)	1,98 (50)	1.85 (47)	2.49 (63)	2.21 (56)	3.27 (83)	2.36 (60)	3.85 (98)	2.97 (75)	4.89 (124)
Minimum hole depth	h _{hole}	in (mm)	2 (51)	2 7/8 (73)	2 3/4 (70)	3 1/2 (89)	3 3/8 (86)	4 5/8 (117)	3 5/8 (92)	5 3/8 (137)	4 3/8 (111)	6 5/8 (168)
Maximum fixture clearance Hole diameter	df	in (mm)	3/8 (9.5)	3/8 (9.5)	1/2 (12.7)	1/2 (12.7)	5/8 (15.9)	5/8 (15.9)	3/4 (19.1)	3/4 (19.1)	7/8 (22.2)	7/8 (22.2)
Maximum installation torque	T _{inst.max}	ft lb (Nm)	15 (20)	24 (33)	35 (47)	50 (68)	45 (61)	65 (88)	85 (115)	100 (136)	115 (156)	150 (203)
Maximum impact wrench torque rating	Timpact.max	ft lb (Nm)	150 (203)	150 (203)	380 (515)	380 (515)	380 (515)	380 (515)	380 (515)	380 (515)	380 (515)	380 (515)
Minimum concrete thickness	h _{min}	in (mm)	3 1/4 (83)	4 (102)	4 (102)	4 3/4 (121)	4 3/4 (121)	6 3/4 (171)	5 (127)	7 (178)	6 (152)	8 1/8 (206)
Critical edge distance	Cac	in (mm)	2 1/2 (64)	3 (76)	4 (102)	5 (127)	4 1/2 (114)	5 (127)	3 3/4 (95)	7 (178)	4 1/2 (114)	8 (203)
Minimum edge distance	Cmin	in (mm)	1 1/2 (38)	2 (51)	1 1/2 (38)	1 1/2 (38)	1 3/4 (44)	1 3/4 (44)	1 3/4 (44)	1 3/4 (44)	1 3/4 (44)	1 3/4 (44)
Minimum spacing	Smin	in (mm)	3 (76)	3 (76)	3 (76)	3 (76)	3 (76)	3 (76)	4 (102)	4 (102)	4 (102)	4 (102)
Minimum overall anchor length ²	lanch	in (mm)	1 3/4 (44,5)	2 5/8 (66,7)	2 3/4 (70)	3 1/2 (89)	3 1/4 (82)	4 1/2 (114)	3 1/2 (89)	5 1/4 (133)	4 1/4 (108)	6 1/2 (165)
Spanner	Sw	in	7/16	7/16	9/16	9/16	3/4	3/4	15/16	15/16	1 1/8	1 1/8
Maximum fixture thickness	t _{fix}	in (mm)	L - 1,6 (L–41)	L - 2.5 (L-64)	L - 2.5 (L-64)	L–3.25 (L83)	L-3 (L-76)	L-4.25 (L-108)	L-3.25 (L-83)	L-5 (L-127)	L-4 (L-102)	L-6.25 (L-159)

For SI: 1 inch = 25.4 mm, 1 ft-lb = 1.356 Nm.

The embedment depth, h_{nom}, is measured from the outside surface of the concrete member to the embedded end of the anchor. 1.

2. The listed minimum overall anchor length is based on anchor sizes commercially available at the time of publication compared with the requirements to achieve the minimum nominal embedment depth and possible fixture attachment.

3. Caution: holes in metal fixtures to be mounted should match the diameter specified in the table below.

4. Caution: oversized holes in base material will reduce or eliminate the mechanical interlock of the threads with the base material and reduce the anchor's load capacity

5. Caution: reuse of the anchor to achieve listed load values is not recommended

TDE / TLE

Denomination: TDE screw anchor

Reference: FT TDE-en

Codes: TDE, TLE

Date: 16/01/2024

Page: 3 of 12

Revision: 14

3. PRODUCT INSTALLATION IN CONCRETE

1. DRILL

Drill a hole into the base material of the correct diameter and depth using a drill bit that meets the requirements of ANSI B212.15

Caution: oversized holes in base material will reduce or eliminate the mechanical interlock of the threads with the base material and reduce the anchor's load capacity

2. BLOW AND CLEAN

Remove dust and debris from hole using a hand pump, compressed air or a vacuum to remove loose particles left from drilling.

3. INSTALL

Select a powered impact wrench or a torque wrench that does not exceed the maximum torque $T_{impact,max}$ or $T_{ins,max}$ respectively. Attach an appropriate sized hex socket to the wrench. Mount the screw anchor head in the socket.

4. APPLY TORQUE

Drive the anchor with an impact driver or a torque wrench through the fixture and into the hole until the anchor head washer comes in contact with the fixture. The anchor must be snug after installation. Do not spin the hex socket off the anchor to disengage.

The screw anchor is permitted to be loosened by a maximum of one full turn and retightened with a torque wrench or a powered impact wrench to facilitate fixture attachment or realignment

Installation accessories

Code no.	Description	Box qty.	Image
MOBOMBA	Hand pump / Dust blower.	1	
MORCEPKIT	Kit 3 cleaning brushes	1	4

TDE / TLE

Denomination: TDE screw anchor

Reference: FT TDE-en

Codes: TDE, TLE

Date: 16/01/2024

Page: 4 of 12

Revision: 14

4. DESIGN INFORMATION FOR CONCRETE APPLICATIONS

Tension design information^{1,2}

Design	Netetion	Unite	nits										
Design	characteristic	Notation	Units	1/	4"	3/	8"	1/	2"	5/	/8"	3/4	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Nominal embedme	nt depth	h _{nom}	in (mm)	1 5/8 (41)	2 1/2 (64)	2 ½ (64)	3 1/4 (83)	3 (76)	4 1/4 (108)	3 1/4 (83)	5 (127)	4 (102)	6 1/4 (159)
Anchor category		1, 2 or 3	-	2	2		1		1		1	1	
			STEEL S	TRENGTH I	N TENSION	(ACI 318-14	17.4.1 or A	CI 318-11 D	.5.1)				
Minimum specified	ultimate strength	f _{uta}	psi (N/mm²)	110 (75	.000 58)	111 (76	111,000 107, (765) (73		7,000 102 738) (7		2,000 03)	99,0 (68	00 3)
Minimum specified	yield strength	fy	psi (N/mm²)	88.000 (607)		88,800 85,0 (612) (59		600 90)	81, (5	,600 63)	79,200 (546)		
Effective tensile str body)	ess area (screw anchor	$A_{\text{se},\text{N}}$	in² (mm²)	0.0438 (28,3)		0.0 (60	0.0943 0.1768 (60.8) (114.1)		0.2 (17	2703 74.4)	0.3988 (257.3)		
Steel strength in te	Nsa	lb (kN)	4,8 (21	320 ,4)	10, (46	467 8.6)	18, (84	918 I.1)	27, (12	,571 22.6)	39,4 (175	81 .6)	
Strength reduction tension ⁴	factor for steel failure in	фsa	-						0.65				
			PULLOUT	STRENGTH	IN TENSIO	N (ACI 318-1	14 17.4.3 or	ACI 318-11	D.5.3)				
Characteristic pullout strength, uncracked concrete (2,500 psi) ^{6,7}		N _{p,uncr}	lb (kN)	1,600 (7.12)	3,345 (14.87)	-	-	-	-	-	-	-	-
Characteristic pullout strength, cracked concrete (2,500 psi) ^{6,7}		N _{p,cr}	lb (kN)	730 (3.26)	1,330 (5.91)	-	-	3,223 (14.33)	-	-	-	-	-
Characteristic pullout strength, cracked concrete (2,500 psi), sesimic ^{6,7,8}		N _{p,eq}	lb (kN)	730 (3.26)	1,330 (5.91)	-	-	3,223 (14.33)	-	-	-	-	-
Normalization	Uncracked concrete	n	-	0,42	0,37	-	-	0.50	-	-	-	-	-
exponent	Cracked concrete	n	-	0,39	0,50	-	-	0,35	-	-	-	-	-
Strength reduction in tension ⁴	factor for pullout strength	фсь	-	0.9	55					0.65			
		CONC	RETE BREA	KOUT STR	ENGTH IN T	ENSION (A	CI 318-14 17	4.2 or ACI	318-11 D.5.2	2)			
Effective embedme	nt	h _{ef}	in (mm)	1,23 (31)	1,98 (50)	1.85 (47)	2.49 (63)	2.21 (56)	3.27 (83)	2.36 (60)	3.85 (98)	2.97 (75)	4.89 (124)
Effectiveness facto	r for uncracked concrete9	kuncr	-	24	24	27	27	27	24	24	24	24	24
Effectiveness facto	for cracked concrete9	k _{cr}	-	17	17	17	17	21	17	17	17	17	17
Critical edge distan	ce	C _{ac}	in (mm)	2 1/2 (64)	3 (76)	4 (102)	5 (127)	4 1/2 (114)	5 (127)	3 3/4 (95)	7 (178)	4 1/2 (114)	8 (203)
Strength reduction in tension ⁴	factor for pullout strength	фр	-	0.9	55			·	1	0.65			•
Axial stiffness in	Uncracked concrete	β _{uncr}	lb/in (kN/mm)	214,520 (37,570)	178,090 (31,190)	63,150 (11,059)	207,850 (36,400)	139,250 (24,386)	140,060 (24,528)	222,870 (39,031)	254,980 (44,653)	292,630 (51,247)	305,530 (53,506)
service load range	Cracked concrete	β _{cr}	lb/in (kN/mm)	186,270 (32,620)	178,950 (31,340)	63,150 (11,059)	174,020 (30,476)	130,385 (22,834)	140,060 (24,528)	105,130 (18,411)	192,280 (33,673)	160,050 (28,029)	165,525 (28,968)
		2		1 2 4 11			A 4 7 7 1	N 1 /					

For SI: 1 inch = 25.4 mm, 1 in² = 645 mm², 1 psi = 0,00689 N/mm²; 1 lb = 0,00445 kN, 1 lbf/in = 0,175 kN/mm
 The data in this table is intended to be used with the design provisions of ACI 318-14 Chapter 17 or ACI 318 Appendix D, as applicable; for anchors resisting seismic load combinations the additional requirements of ACI 318-14 17.2.3 or ACI 318 D.3.3, as applicable, shall apply.
 Installation must comply with published instructions and details.

3

Tabulated values for steel strength in tension are based on test results per ACI 355.2 and must be used for design. All values of ϕ were determined from the load combinations of IBC Section 1605.2, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2, as applicable. If the load combinations of ACI 4. 318-11 Appendix C are used, then the appropriate value of \$\$\$ must be determined in accordance with ACI 318-11 D.4.4. For reinforcement that meets ACI 318-14 Chapter 17 or ACI 318 Appendix D, as applicable, requirements for Condition A, see ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, for the appropriate ϕ factor when the load combinations of IBC Section 1605.2, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2, as applicable, are used. TDE / TLE screw anchor is considered a brittle steel element in tension as defined by ACI 318-14 2.3 or ACI 318 D.1, as applicable.

5.

For concrete compressive strength greater than 2,500 psi, $N_{pn} = (pullout strength value from table)^{*}(specified concrete compressive strength/2500)^{n}$ Pullout strength does not control design of indicated anchors. Do not calculate pullout strength for indicated anchor size and embedment 6. 7.

Reported values for characteristic pullout strength in tension for seismic applications are based on test results per ACI 355.2, Section 9.5 Select appropriate effectiveness factor for cracked concrete (k_{cr}) or uncracked concrete (k_{ucr}). 8.

9. 10.

Been values shown; actual stiffness varies considerable depending on concrete strength, loading and geometry of application. Anchors are permitted to be used in sand-lightweight concrete provided that N_b , N_{eq} and N_{pn} are multiplied by a factor of 0.60. 11.

TDE / TLE

Denomination: TDE screw anchor

Reference: FT TDE-en

Codes: TDE, TLE

Date: 16/01/2024

Page: 5 of 12

Revision: 14

Shear design information^{1,2}

Design characteristic		Unite				No	minal and	chor dian	neter			
Design characteristic	Notation	Units	1/4"		3/	8"	1/	2"	5/8"		3/4"	
Nominal embedment depth	h _{nom}	in (mm)	1 5/8 (41)	2 1/2 (64)	2 1/2 (64)	3 1/4 (83)	3 (76)	4 1/4 (108)	3 ¼ (83)	5 (127)	4 (102)	6 1/4 (159)
Anchor category	1, 2 or 3	-	2	2	1		1		1		1	i
	STEEL	STRENGTH	IN SHEAR	(ACI 318-	-14 17.5.1 c	or ACI 318	•11 D.6.1)⁵					
Minimum specified ultimate strength	f _{uta}	psi (N/mm²)	110 (75	.000 58)	111 (76	,000 65)	107 (73	,000 38)	102 (7	2,000 03)	99,0 (68	000 33)
Minimum specified yield strength	fy	psi (N/mm²)	88. (60	000 07)	88, (6	800 12)	85, (59	600 90)	81, (5	,600 63)	79,2 (54	200 16)
Effective tensile stress area (screw anchor body)	$A_{\text{se,V}}$	in ² (mm ²)	0.0 (28	438 8,3)	0.0 (60	0.0943 (60.8)		0.1768 (114.1)		0.2703 (174.4)		988 7.3)
Steel strength in shear ³	V _{sa}	lb (kN)	1,555 (6,92)	2,738 (12.18)	4,817 (21.43)	4,848 (21.57)	7,268 (32.33)	9,371 (41.68)	10,300 (45.81)	12,736 (56.65)	14,238 (63.33)	14,238 (63.33)
Steel strength in shear, seismic (2500 psi) ⁵	V _{sa, eq}	lb (kN)	1,555 (6,92)	2,493 (11,09)	4,075 (18.13	4,075 (18.13)	5,075 (22.57)	7,142 (31.77)	8,029 (35.72)	10,302 (45.83)	12,105 (53.85)	12,105 (53.85)
Strength reduction factor for steel failure in shear ⁶	ф _{sa}	-					0	.60				
со	NCRETE BRI	EAKOUT ST	RENGTH I	N SHEAR	(ACI 318-1	4 17.5.2 o	r ACI 318-1	1 D.6.2)				
Nominal anchor diameter	do	in (mm)	1/4 (6,4)	1/4 (6,4)	3/8 (9.5)	3/8 (9.5)	1/2 (12.7)	1/2 (12.7)	5/8 (15.9)	5/8 (15.9)	3/4 (19.1)	3/4 (19.1)
Load bearing length of anchor	le	in (mm)	1,23 (31)	1,98 (50)	1.85 (47)	2.49 (63)	2.21 (56)	3.27 (83)	2.36 (60)	3.85 (98)	2.97 75)	4.89 (124)
Strength reduction factor for concrete strength in shear $^{\rm 6}$	фсь	-					0	.70				
	PRYOUT	STRENGT	H IN SHEA	R (ACI 31	8-14 17.5.3	or ACI 31	8-11 D.6.3)			1	1	-
Coefficient for pryout strength	k _{cp}	-	1.0	1.0	1.0	1.0	1.0	2.0	1.0	2.0	2.0	2.0
Effective embedment depth	h _{ef}	in (mm)	1,23 1,98 1.8 (31) (50) (4			2.49 (63)	2.21 (56)	3.27 (83)	2.36 (60)	3.85 (98)	2.97 (75)	4.89 (124)
Reduction factor for pryout strength in shear ⁶	фср	-	0.70									

For SI: 1 inch = 25.4 mm, 1 in² = 645 mm², 1 psi = 0,00689 N/mm²; 1 lb = 0,00445 kN

The data in this table is intended to be used with the design provisions of ACI 318-14 Chapter 17 or ACI 318 Appendix D, as applicable; for anchors resisting seismic load combinations the additional requirements of ACI 318-14 17.2.3 or ACI 318 D.3.3 shall apply, as applicable. Installation must comply with published instructions and details. 1.

2.

3. Reported values for steel strength in shear are based on test results per ACI 355.2, Section 9.4 and shall be used for design.

4. TDE / TLE is considered a brittle steel element as defined by ACI 318-14 2.3 or ACI 318-11 D.1, as applicable.

5. Reported values for steel strength in shear for seismic applications are based on test results per ACI 355.2, Section 9.6

All values of ϕ were determined from the load combinations of IBC Section 1605.2, ACI 318-14 Section 9.2. If the load combinations of ACI 318-11 Appendix C are used, then the appropriate value of Φ must be determined in accordance with ACI 318-11 D.4.4. For reinforcement that meets ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable, requirements for Condition A, see ACI 318-14 17.3.3 or ACI 318-11 D.4.3, for the appropriate ϕ factor when the load combinations of IBC Section 5.3 or ACI 318-14 17.3.3 or ACI 318-11 D.4.3, for the appropriate ϕ factor when the load combinations of IBC Section 5.3 or ACI 318-14 17.3.3 or ACI 318-14 17.3.3 or ACI 318-14 D.4.3. 6.

7. Anchors are permitted to be used in sand-lightweight concrete provided that V_b and V_{cp} are multiplied by a factor of 0.60.

TDE / TLE

Denomination: TDE screw anchor	Codes: TDE, TLE					
Reference: FT TDE-en	Date: 16/01/2024	Revision: 14	Page: 6 of 12			

Factored design strength (ΦN_n and ΦV_n) calculated in accordance with ACI 318-14:

- 1- Tabular values are provided for illustration and are applicable for single anchors installed in normal weight concrete with minimum slab thickness, $h_a = h_{min}$, and with the following conditions:
 - C_{a1} is greater than or equal to the critical edge distance, C_{ac} (table values based on $C_{a1} = C_{ac}$).
 - C_{a2} is greater than or equal to 1.5 times C_{a1} .
- 2- Calculations were performed according to ACI 318-14. The load level corresponding to the controlling failure mode is listed. (e.g. For tension: steel, concrete breakout and pullout; For shear: steel, concrete breakout and pryout). Furthermore, the capacities for concrete breakout strength in tension and pryout strength in shear are calculated using the effective embedment values, h_{ef}, for the selected anchors as noted in the design information tables. Please also reference the installation specifications for more information.
- 3- Strength reduction factors (Φ) were based on ACI 318-14 section 17.3.3 for load combinations. Condition B is assumed. Condition B is applied where supplementary reinforcement is not supplied.
- 4- Tabular values are permitted for static loads only, seismic loading is not considered with these tables.
- 5- For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-14 section 17.6.
- 6- Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths please see ACI 318-14. For other design conditions including seismic considerations please see ACI 318-14.

Tension and shear design strengths for TDE / TLE in cracked concrete

	Nominal			I	Minimum	concrete c	ompressiv	e strength				
Nominal anchor	embed.	f´c = 2,5	i00 psi	f´c = 3,0)00 psi	f´c = 4,0	0 00 psi	f´c = 6,0	000 psi	f´c = 8,000 psi		
diameter (in.)	h _{nom} (in.)	ΦN _n Tension (lb.)	ΦV _n Shear (lb.)	ΦN _n Tension (lb.)	ΦV _n Shear (lb.)	ΦN _n Tension (lb.)	ΦV _n Shear (Ib.)	ΦN _n Tension (Ib.)	ΦV _n Shear (lb.)	ΦN _n Tension (Ib.)	ΦV _n Shear (lb.)	
4/4	1 5/8	403	812	417	889	441	933	478	933	505	933	
1/4	2 1/2	730	1,643	764	1,643	821	1,643	909	1,643	977	1,643	
2/9	2 1/2	1.390	1.497	1.523	1.640	1.759	1.894	2.154	2.319	2.487	2.678	
3/8	3 ¼	2.171	2.338	2.378	2.561	2.746	2.909	3.363	2.909	3.883	2.909	
1/0	3	2.095	2.415	2.163	2.645	2.275	3.054	2.442	3.741	2.568	4.320	
1/2	4 1⁄4	3.267	5.623	3.579	5.623	4.133	5.623	5.061	5.623	5.844	5.623	
E /0	3 ¼	2.003	2.157	2.194	2.363	2.534	2.729	3.103	3.342	3.583	3.859	
5/6	5	4.147	7.642	4.572	7.642	5.279	7.642	6.466	7.642	7.466	7.642	
2/4	4	2.828	6.091	3.098	6.672	3.577	7.704	4.381	8.543	5.059	8.543	
3/4	6 ¼	5.974	8.543	6.545	8.543	7.557	8.543	9.256	8.543	10.687	8.543	
	Color code:		Pullout			Concrete / pryout			Steel			

Tension and shear design strengths for TDE / TLE in uncracked concrete

	Nominal				Minimum	concrete co	ompressive	e strength				
Nominal anchor	embed.	f´c = 2,5	00 psi	f´c = 3,	000 psi	f´c = 4,	000 psi	f´c = 6,000 psi		f´c = 8,000 psi		
diameter (in.)	h _{nom} (in.)	ΦN _n Tension (lb.)	ΦV _n Shear (Ib.)	ΦN _n Tension (lb.)	ΦV _n Shear (Ib.)	ΦN _n Tension (lb.)	ΦV _n Shear (Ib.)	ΦN _n Tension (lb.)	ΦV _n Shear (lb.)	ΦN _n Tension (lb.)	ΦV _n Shear (lb.)	
4/4	1 5/8	881	933	915	933	973	933	1,059	933	1,125	933	
1/4	2 1/2	1,839	1,643	1,902	1,643	2,006	1,643	2,162	1,643	2,280	1,643	
2/0	2 1/2	2.208	2.378	2.419	2.605	2.793	2.890	3.421	2.890	3.950	2.890	
3/8	3 ¼	3.448	2.909	3.777	2.909	4.361	2.909	5.341	2.909	6.168	2.909	
1/0	3	2.883	3.105	3.158	3.401	3.647	3.927	4.466	4.361	5.157	4.361	
1/2	4 1⁄4	4.612	5.623	5.053	5.623	5.834	5.623	7.145	5.623	8.251	5.623	
E/0	3 ¼	2.828	3.045	3.098	3.336	3.577	3.852	4.381	4.718	5.059	5.448	
5/6	5	5.892	7.642	6.455	7.642	7.453	7.642	9.128	7.642	10.540	7.642	
2/4	4	3.992	8.543	4.373	8.543	5.050	8.543	6185	8.543	7.142	8.543	
3/4	6 1/4	8.434	8.543	9.240	8.543	10.669	8.543	13.067	8.543	15.088	8.543	
	Color code:				Concre	Concrete / pryout			Steel			

TDE / TLE

Denomination: TDE screw anchor	Codes: TDE, TLE		
Reference: FT TDE-en	Date: 16/01/2024	Revision: 14	Page: 7 of 12

Converted allowable loads for TDE /TLE

ESR-4314 provides design information for load factor and characteristic resistance (LRFD), however allowable stress design (ASD) is still in use by some users. Translation of LRFD to ASD values is possible, however it is dependent on the levels of dead load and live load. Dead load is defined in the ACI 318 Building Code Requirements for Structural Concrete as "the weights of members, supported structure and permanent attachments that are likely to be present on a structure in service". Live load is defined in ACI 318-14 as "load that is not permanently applied to a structure, but is likely to occur during the service life of the structure (excluding environmental loads)". Examples of live loads are traffic on a walkway and non permanent loads associated with usage of a structure. Live load values are stipulated in the building code for various loading conditions and parts of structures.

To facilitate the translation of LRFD characteristic values to ASD values, a scenario of dead load and live load level is used to conservatively address the most common application as follows: 30% dead load; 70% live load. ACI 318-14 Equation (5.3.1b) provides a conversion factor of 1,48 which is divided into the LRFD characteristic resistances and multiplied by a ¢ factor (according to the failure type) to determine an equivalent ASD load.

It is the responsibility of the user to select the appropriate ASD values based on the example loadings shown in this document or alternative dead versus live loading that may be applicable to the specific design.

The ASD values are provided in the following tables for tension and shear for different concrete strengths. Other installation and design provisions in ESR-4314 must be followed.

Minimum concrete compressive strength Nominal Nominal f´c = 2,500 psi f'c = 6,000 psi f′c = 8,000 psi embed. f[′]c = 3.000 psi f'c = 4,000 psi anchor hnom diameter Talle able ASD able ASD able ASD able ASD Tallo able ASD le ASD Tallow able ASD Tallo able ASD e ASD (in.) (in.) Tension (lb) Tension (lb) Tension (lb) Shear (lb) Shear (lb) Shear (lb) Tension (lb) Tension (lb) Shear (lb) Shear (lb) 1 5/8 272 548 298 630 341 630 282 601 630 323 1/4 2 1/2 494 1,110 517 1.110 555 1,110 614 1,110 660 1,110 2 1/2 939 1.012 1.029 1.108 1.188 1.280 1.455 1.567 1.680 1.810 3/8 3 1/4 1.467 1.580 1.607 1.730 1.855 1.965 2.272 1.965 2.624 1.965 3 1.415 1.632 1.461 1.787 1.537 2.064 1.650 2.528 1.735 2.919 1/2 2.207 3.779 2.418 3.779 2.792 3.779 3.420 3.779 3.949 3.779 4 1/4 1.353 1.458 1.483 2.097 2.258 2.421 2.607 3 1/4 1.597 1.712 1.844 5/8 2.820 3.089 5 5.163 5.163 3.587 5.163 4.369 5.163 5.045 5.163 4 1.911 4.115 2.093 4.508 2.417 5.206 2.960 5.772 3.418 5.772 3/46 1⁄4 4.037 5.772 4.422 5.772 5.106 5.772 6.254 5.772 7.221 5.772

Converted allowable loads for TDE /TLE in cracked concrete

Allowable load values are calculated using a conversion factor, a, from factored design strengths. 1.

Tabulated allowable load values assume 30% dead load and 70% live load, with controlling load combination 1,2D + 1,6L. Calculated weighted average for the conversion factor, $\alpha = 1,2^{*}(0,3) + 1,6^{*}(0,7) = 1,48$. 2.

Converted allowable loads for TDE in uncracked concrete

	Nominal				Minim	um concrete c	ompressive st	rength			
anchor	embed.	f´c = 2,5	500 psi	f´c = 3,0)00 psi	f´c = 4,0	000 psi	f´c = 6,0	000 psi	f´c = 8,000 psi	
diameter (in.)	h _{nom} (in.)	T _{allowable ASD} Tension (lb)	V _{allowable ASD} Shear (Ib)	T _{allowable ASD} Tension (lb)	Vallowable ASD Shear (Ib)	T _{allowable ASD} Tension (lb)	V _{allowable ASD} Shear (Ib)	T _{allowable ASD} Tension (lb)	Vallowable ASD Shear (Ib)	Tallowable ASD Tension (Ib)	V _{allowable ASD} Shear (Ib)
1/4	1 5/8	595	630	619	630	657	630	715	630	760	630
1/4	2 1/2	1,242	1,110	1,285	1,110	1,355	1,110	1,461	1,110	1,541	1,110
3/8	2 1/2	1.492	1.607	1.634	1760	1.887	1.953	2.311	2.116	2.669	1.953
	3 ¼	2.330	1.965	2.552	1.965	2.947	1.965	3.609	1.965	4.167	1.965
4/0	3	1.948	2.098	2.134	2.298	2.464	2.653	3.018	2.947	3.485	2.947
1/2	4 ¼	3.116	3.799	3.414	3.799	3.942	3.799	4.828	3.799	5.575	3.799
E /0	3 ¼	1.911	2.058	2.093	2.254	2.417	2.603	2.960	3.188	3.418	3.681
5/8	5	3.981	5.165	4.361	5.165	5.036	5.165	6.168	5.165	7.122	5.165
0/4	4	2.698	5.772	2.955	5.772	3.412	5.772	4.179	5.772	4.826	5.772
3/4	6 ¼	5.699	5.772	6.243	5.772	7.209	5.772	8.829	5.772	10.195	5.772
1.	1 Allowable load values are calculated using a conversion factor α from factored design strengths										

2.

Tabulated allowable load values assume 30% dead load and 70% live load, with controlling load combination 1,2D + 1,6L. Calculated weighted average for the conversion factor, $\alpha = 1,2^{*}(0,3) + 1,6^{*}(0,7) = 1,48$.

TDE / TLE

Denomination: TDE screw anchor

Reference: FT TDE-en

Codes: TDE, TLE

Date: 16/01/2024

Revision: 14 Page: 8 of 12

5. INSTALLATION DETAILS IN GROUTED CMU MASONRY

Deremeter	Symphol	Unite	Nominal anchor diameter									
Parameter	Symbol	Units	1/	4"	3/	8"	1/	/2"	5/	8"	3/	4"
Drill bit diameter	d ₀	in (mm)	1/4 (6.4)	1/4 (6.4)	3/8 (9.5)	3/8 (9.5)	1/2 (12.7)	1/2 (12.7)	5/8 (15.9)	5/8 (15.9)	3/4 (19.1)	3/4 (19.1)
Nominal embedment depth ¹	h _{nom}	in (mm)	1 5/8 (41)	2 1/2 (64)	2 (51)	3 1/4 (83)	2 1/2 (64)	4 1/4 (108)	3 1/4 (83)	5 (127)	4 (102)	6 1/4 (159)
Effective embedment depth	h _{ef}	in (mm)	1,23 (31)	1,98 (50)	1,42 (36)	2,49 (63)	1,78 (45)	3.27 (83)	2.36 (60)	3.85 (98)	2.97 (75)	4.89 (124)
Minimum hole depth	h _{hole}	in (mm)	2 (51)	2 7/8 (73)	2 3/8 (60)	3 5/8 (92)	2 7/8 (73)	4 5/8 (117)	3 5/8 (92)	5 3/8 (137)	4 3/8 (111)	6 5/8 (168)
Maximum fixture clearance Hole diameter	df	in (mm)	3/8 (9.5)	3/8 (9.5)	1/2 (12.7)	1/2 (12.7)	5/8 (15.9)	5/8 (15.9)	3/4 (19.1)	3/4 (19.1)	7/8 (22.2)	7/8 (22.2)
Maximum installation torque	T _{inst}	ft lb (Nm)	5 (7)	5 (7)	15 (20)	15 (20)	30 (41)	30 (41)	40 (54)	40 (54)	40 (54)	40 (54)
Maximum impact wrench torque rating	T _{impact.max}	ft lb (Nm)	150 (203)	150 (203)	380 (515)	380 (515)	380 (515)	380 (515)	380 (515)	380 (515)	380 (515)	380 (515)
Critical edge distance	Ccr	in (mm)	1,85 (47)	2,97 (75)	2,14 (54)	3,73 (95)	2,67 (68)	4,91 (125)	3,54 (90)	5,78 (147)	4,46 (113)	7,34 (186)
Minimum distance to the head joint	C _{min,h,j}	in (mm)	2 (51)	2 (51)	2 (51)	2 (51)	2 (51)	2 (51)	2 (51)	2 (51)	2 (51)	2 (51)
Minimum edge distance field of wall	Cmin	in (mm)	4 (102)	3 (76)	4 (102)	4 (102)	4 (102)	4 (102)	4 (102)	4 (102)	4 (102)	4 (102)
Minimum spacing field of wall	Smin	in (mm)	4 (102)	4 (102)	4 1/2 (114)	4 (102)	4 (102)	4 (102)	4 (102)	4 (102)	4 (102)	4 (102)
Minimum edge distance top of wall	Cmin	in (mm)	1 3/4 (44)	1 3/4 (44)	1 3/4 (44)	1 3/4 (44)	1 3/4 (44)	1 3/4 (44)	1 3/4 (44)	1 3/4 (44)	1 3/4 (44)	1 3/4 (44)
Minimum spacing top of wall	Smin	in (mm)	4 1/2 (114)	4 1/2 (114)	4 1/2 (114)	4 1/2 (114)	5 1/2 (140)	5 1/2 (140)	6 1/2 (165)	6 1/2 (165)	8 1/2 (216)	8 1/2 (216)
Minimum overall anchor length ²	lanch	in (mm)	1 3/4 (44)	2 5/8 (67)	2 1/4 (57)	3 1/2 (89)	2 3/4 (82)	4 1/2 (114)	3 1/2 (89)	5 1/4 (133)	4 1/4 (108)	6 1/2 (165)
Spanner	Sw	in	7/16	7/16	9/16	9/16	3/4	3/4	15/16	15/16	1 1/8	1 1/8
Maximum fixture thickness	t _{fix}	in (mm)	L - 1,6 (L-41)	L - 2.5 (L-64)	L - 2 (L-51)	L-3.25 (L83)	L-2,5 (L-64)	L-4.25 (L-108)	L-3.25 (L-83)	L-5 (L-127)	L-4 (L-102)	L-6.25 (L-159)

For SI: 1 inch = 25.4 mm, 1 ft-lb = 1.356 Nm.

1. The embedment depth, h_{nom}, is measured from the outside surface of the masonry member to the embedded end of the anchor.

2. The listed minimum overall anchor length is based on anchor sizes commercially available at the time of publication compared with the requirements to achieve the minimum nominal embedment depth and possible fixture attachment.

3. Caution: holes in metal fixtures to be mounted should match the diameter specified in the table below.

4. Caution: oversized holes in base material will reduce or eliminate the mechanical interlock of the threads with the base material and reduce the anchor's load capacity

5. Caution: reuse of the anchor to achieve listed load values is not recommended

TDE / TLE			
Denomination: TDE screw anchor	Codes: TDE, TLE		
Reference: FT TDE-en	Date: 16/01/2024	Revision: 14	Page: 9 of 12

6. PRODUCT INSTALLATION IN CMU MASONRY

Drill a hole into the base material of the correct diameter and depth using a drill bit that meets the requirements of ANSI B212.15

Caution: oversized holes in base material will reduce or eliminate the mechanical interlock of the threads with the base material and reduce the anchor's load capacity

2. BLOW AND CLEAN

Remove dust and debris from hole using a hand pump, compressed air or a vacuum to remove loose particles left from drilling.

3. INSTALL

Select a powered impact wrench or a torque wrench that does not exceed the maximum torque Timpact,max or Tins,max respectively. Attach an appropriately sized hex socket to the wrench. Mount the screw anchor head in the socket.

4. APPLY TORQUE

Drive the anchor with an impact driver or a torque wrench through the fixture and into the hole until the anchor head washer comes in contact with the fixture. The anchor must be snug after installation. Do not spin the hex socket off the anchor to disengage.

The screw anchor is permitted to be loosened by a maximum of one full turn and retightened with a torque wrench or a powered impact wrench to facilitate fixture attachment or realignment

Code no.	Description	Box qty.	Image
MOBOMBA	Hand pump / Dust blower.	1	H_ J
MORCEPKIT	Kit 3 cleaning brushes	1	1

Installation accessories

TDE / TLE

Denomination: TDE screw anchor

Reference: FT TDE-en

Codes: TDE, TLE

Date: 16/01/2024

Page: 10 of 12

Revision: 14

7. DESIGN INFORMATION FOR CMU MASONRY APPLICATIONS

Tension design information^{1,2}

Decise al estatistic		Netetian	Unite	Nominal anchor diameter									
Design	characteristic	Notation	Units	1/4"		3/	8"	1/	2"	5/8"		3/4"	
Nominal embedme	nt depth	h _{nom}	in (mm)	1 5/8 (41)	2 1/2 (64)	2 (51)	3 1/4 (83)	2 1/2 (64)	4 1/4 (108)	3 1/4 (83)	5 (127)	4 (102)	6 1/4 (159)
Anchor category		1, 2 or 3	-		1		1		1	1		2	
			STEEL S	TRENGTH I	N TENSION	(ACI 318-14	17.4.1 or A	CI 318-11 D	.5.1)				
Minimum specified	ultimate strength	f _{uta}	psi (N/mm²)	110.000 (758)		111,000 (765)		107,000 (738)		102,000 (703)		99,000 (683)	
Minimum specified	yield strength	fy	psi (N/mm²)	88.000 (607) 88,800 (612)		85,600 (590)		81,600 (563)		79,200 (546)			
Effective tensile str body)	ess area (screw anchor	A _{se,N}	in ² (mm ²)	0.0438 0.0943 (28,3) (60.8)		0.1768 (114.1)		0.2703 (174.4)		0.3988 (257.3)			
	PULLOUT STRENGTH IN TENSION (ACI 318-14 17.4.3 or ACI 318-11 D.5.3)												
Characteristic pullout strength, uncracked masonry ⁶		N _{p,uncr}	lb (kN)	917 (4.08)	2167 (9.64)	824 (3.66)	3,953 (17.58)	1,633 (7,26)	1,619 (7.20)	2,706 (12.04)	4,513 (20.08)	3,367 (14.98)	5,744 (25.55)
Characteristic pullout strength, cracked masonry ⁶		N _{p,cr}	lb (kN)			437 (1.94)	2,097 (9.33)	873 (3.88)	866 (3.85)	2,591 (11.53)	4,321 (19.22)	2,894 (12.87)	3,791 (16.86)
Characteristic pullout strength, top of wall		N _{eq}	lb (kN)	917 (4.08)	1,975 (8.78)	824 (3.66)	1,175 (5.23)	1,485 (6.61)	1,619 (7.20)	1,747 (7.77)	3,306 (14.70)	3,303 (14.69)	4,082 (18.16)
Strength reduction in tension ⁴	factor for pullout strength	фсь	-	0.65						0.55			
	Uncracked masonry	β _{uncr}	lb/in (kN/mm)	105,563 (18,845)	121,349 (21,252)	122.681 (21,485)	121.349 (21,252)	170.136 (29,795)	87.954 (15,403)	119.675 (20,958)	124.779 (21,852)	110.495 (19,351)	226.287 (39,629)
Axial stiffness in service load range ⁶	Cracked masonry	β _{cr}	lb/in (kN/mm)			144.644 (25,331)	76.812 (13,452)	78.069 (13,672)	113.586 19,892)	82.924 (14,522)	74.917 (13,120)	101.211 (17,725)	47.422 (8,305)
	Top of wall	β_{cr}	lb/in (kN/mm)	92,150 (16,138)	7,993 (1,400)	93,455 (16,367)	47,984 (8,403)	100,955 (17,680)	27,476 (4,812)	41,307 (7,234)	54,810 (9,599)	31,215 (5,467)	70,483 (12,344)
Coefficient of variation for axial stiffness in service load range	Uncracked masonry	Vuncr	%	65	33	66	33	55	30	43	57	29	37
	Cracked masonry	Vuncr	%			62	43	72	47	49	35	45	18
	Top of wall	Vuncr	%	37	55	77	22	45	34	44	25	42	51

For SI: 1 inch = 25.4 mm, 1 in² = 645 mm², 1 psi = 0,00689 N/mm²; 1 lb = 0,0045 kN, 1 lbf/in = 0,175 kN/mm
The data in this table is intended to be used with the design provisions of ACI 318-14 Chapter 17, ACI 318 Appendix D and AC 01, as applicable.
Installation must comply with published instructions and details.
Tabulated values for steel strength in tension are based on test results per AC01 and must be used for design.

4.

All values of ϕ were determined from the load combinations of ACO1 section 3.3.2.9. TDE / TLE screw anchor is considered a brittle steel element in tension as defined by ACI 318-14 2.3 or ACI 318 D.1, as applicable. Mean values shown; actual stiffness varies considerable depending on loading and geometry of application.. 5.

TDE / TLE

Denomination: TDE screw anchor

Reference: FT TDE-en

Codes: TDE, TLE

Date: 16/01/2024

Page: 11 of 12

Revision: 14

Shear design information^{1,2}

Desire sharederistic	Notation	11	Nominal anchor diameter									
Design characteristic		Units	1/4"		3/8"		1/2"		5/8"		3/4"	
Nominal embedment depth	h _{nom}	in (mm)	1 5/8 (41)	2 1/2 (64)	2 (51)	3 1/4 (83)	2 1/2 (64)	4 1/4 (108)	3 1/4 (83)	5 (127)	4 (102)	6 1/4 (159)
Anchor category	1, 2 or 3	-	1 1		1		1		2			
STEEL STRENGTH IN SHEAR (ACI 318-14 17.5.1 or ACI 318-11 D.6.1)5												
Minimum specified ultimate strength	f _{uta}	psi (N/mm²)	110.000 (758)		111,000 (765)		107,000 (738)		102,000 (703)		99,000 (683)	
Minimum specified yield strength	fy	psi (N/mm²)	88. (60	88.000 88,800 (607) (612)		85,600 (590)		81,600 (563)		79,200 (546)		
Effective tensile stress area (screw anchor body)	A _{se,V}	in ² (mm ²)	0.0 (28	0.0438 0.0943 (28,3) (60.8)		0.1768 (114.1)		0.2703 (174.4)		0.3988 (257.3)		
Steel strength in shear, field of wall ³	V _{sa}	lb (kN)	1,959 (8.71)	1,959 (8.71)	3,220 (14.33)	3,220 (14.33)	3,837 (17.07)	5,524 (24.57)	6,463 (28.75)	7,700 (34.25)	8,973 (39.91)	9,427 (41.93)
Steel strength in shear, top of wall ⁵	V_{sa}	lb (kN)	533 (2.37)	533 (2.37)	1,335 (5.94)	1,335 (5.94)	1,991 (8.86)	1,991 (8.86)	2,175 (9.67)	2,175 (9.67	4,203 (18.70)	4,203 (18.70)
Strength reduction factor for steel failure in shear ⁶	ф _{sa}	-	0.60									
For SI: 1 inch = 25.4 mm, 1 in ² = 645 mm ² , 1 psi = 0,00689 N/mm ² ; 1 lb = 0,00445 kN												

The data in this table is intended to be used with the design provisions of ACI 318-14 Chapter 17 or ACI 318 Appendix D, as applicable.

2. Installation must comply with published instructions and details.

Reported values for steel strength in shear are based on test results per AC 01 and shall be used for design. 3.

All values of ϕ were determined from the load combinations of AC01 section 3.3.2.9 4

Factored design strength (ΦN_n and ΦV_n) calculated in accordance with ACI 318-14:

Tabular values are provided for illustration and are applicable for single anchors installed in fully grouted CMU masonry applications: Edge distances C_{a1} are greater than or equal to the critical edge distance, C_{cr} .

Calculations were performed according to ACI 318-14 and AC 01.

Strength reduction factors (Φ) were based on AC01 section 3.3.2.9.

Tabular values are permitted for static loads only, seismic loading is not considered with these tables. For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-14 section 17.6.

Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths please see ACI 318-14 and AC 01. For other design conditions please see ACI 318-14and AC 01.

Tension and shear design strengths for TDE / TLE in masonry

	Nominal	Nominal embed.		Uncracke				
	anchor		Field of wall		Тор о	f wall	Gracked masonry	
dia (liameter (in)	h _{nom}	ΦNn	ΦVn	ΦNn	ΦVn	ΦNn	ΦVn
	()	(in.)	Tension (lb.)	Shear (lb.)	Tension (lb.)	Shear (lb.)	Tension (lb.)	Shear (lb.)
	1/4	1 5/8	596	1,186	596	323		
	1/4	2 1/2	1,409	1,186	1,284	323		
	2/9	2	536	1,932	536	801	284	1,932
	3/0	3 ¼	2,569	1,932	764	801	1,363	1,932
	1/2	2 1⁄2	1,061	2,302	965	1,195	567	2,302
	1/2	4 ¼	1,052	3,314	1,052	1,195	563	3,314
	E/0	3 ¼	1,759	3,878	1,136	1,305	1,684	3,878
	5/6	5	2,933	4,620	2,149	1,305	2,809	4,620
	2/1	4	1,852	5,384	1,817	2,522	1,592	5,384
3/4	5/4	6 ¼	3,159	5,656	2,245	2,522	2,085	5,656

TDE / TLE

Denomination: TDE screw anchor	Codes: TDE, TLE		
Reference: FT TDE-en	Date: 16/01/2024	Revision: 14	Page: 12 of 12

Converted allowable loads for TDE /TLE

ESR-5216 provides design information for load factor and characteristic resistance (LRFD), however allowable stress design (ASD) is still in use by some users. Translation of LRFD to ASD values is possible, however it is dependent on the levels of dead load and live load. Dead load is defined in the ACI 318 Building Code Requirements for Structural Concrete as "the weights of members, supported structure and permanent attachments that are likely to be present on a structure in service". Live load is defined in ACI 318-14 as "load that is not permanently applied to a structure, but is likely to occur during the service life of the structure (excluding environmental loads)". Examples of live loads are traffic on a walkway and non-permanent loads associated with usage of a structure. Live load values are stipulated in the building code for various loading conditions and parts of structures.

To facilitate the translation of LRFD characteristic values to ASD values, a scenario of dead load and live load level is used to conservatively address the most common application as follows: 30% dead load; 70% live load. ACI 318-14 Equation (5.3.1b) provides a conversion factor of 1,48 which is divided into the LRFD characteristic resistances and multiplied by a ϕ factor (according to the failure type) to determine an equivalent ASD load.

It is the responsibility of the user to select the appropriate ASD values based on the example loadings shown in this document or alternative dead versus live loading that may be applicable to the specific design.

The ASD values are provided in the following tables for tension and shear for different concrete strengths. Other installation and design provisions in ESR-5216 must be followed.

Nominal	Nominal embed. h _{nom} (in.)		Uncrack	Cracked masonry					
anchor diameter		Field o	f wall	Тор о	f wall				
(in.)		ΦNn	ΦVn	ΦNn	ΦVn	ΦNn	ΦV _n		
		Tension (lb.)	Shear (lb.)	Tension (lb.)	Shear (lb.)	Tension (lb.)	Shear (lb.)		
1/4	1 5/8	403	801	403	218				
1/4	2 1/2	952	801	867	218				
2/9	2	362	1,305	362	541	192	1,305		
3/0	3 ¼	1,736	1,305	516	541	921	1,305		
1/2	2 1⁄2	717	1,556	652	807	383	1,556		
1/2	4 ¼	711	2,239	711	807	380	2,239		
5/9	3 ¼	1,188	2,620	767	882	1,138	2,620		
5/6	5	1,982	3,122	1,452	882	1,898	3,122		
2/4	4	1,251	3,638	1,227	1,704	1,075	3,638		
3/4	6 ¼	2,135	3,822	1,517	1,704	1,409	3,822		
1. Allowa	 Allowable load values are calculated using a conversion factor, α, from factored design strengths. 								
2. Tabulated allowable load values assume 30% dead load and 70% live load, with controlling load combination 1,2D + 1,6L. Calculated weighted average for the conversion factor, $\alpha = 1,2^{*}(0,3) + 1,6^{*}(0,7) = 1,48$.									

Converted allowable loads for TDE /TLE in masonry